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1. Introduction 
This document presents the analytical development of the aircraft dynamics model for the 

enhancement of the functional capabilities of the FAA Target Generation Facility (TGF). 

The work was originally conducted under Seagull Technology’s contract  No. DTFA03-

94-C-00042 (CADSS) with the FAA. Specifically, this document discusses the detailed 

engineering design and software implementation of an Aircraft Dynamics Model (ADM) 

suitable for incorporation into the FAA TGF simulations at the FAA William J. Hughes 

Technical Center, Atlantic City, NJ. The model is designed to be implemented on 

computers located within the facility, and to work in conjunction with software models of 

radar, data links, and other Air Traffic Management (ATM) equipment to provide real-

time simulation of aircraft operating within the National Airspace System (NAS). This 

introductory section provides a brief background into the project as well as discusses the 

scope and organization of the document.  

1.1 Background 

The FAA William J. Hughes Technical Center conducts research and development to 

investigate emerging Air Traffic Control (ATC) & ATM technologies, associated 

applications, and ATC processes and procedures. Inherent in these efforts is the 

requirement to emulate real-world operational conditions in laboratory environments. 

This requirement extends across the operational domains (e.g., Terminal, En Route, and 

Oceanic). Much of this work requires the establishment of operational test beds 

encompassing current operational as well as emerging prototype ATC systems. These test 

beds are frequently used to conduct studies that simulate the operational conditions found 

or desired in the associated domain. In the majority of cases, it is necessary to provide 

realistic representation of air traffic scenarios to evaluate the system, process, or 

procedure being evaluated. The Technical Center’s TGF provides this capability by 

producing simulated primary and secondary radar targets to the system under test. To the 

greatest extent possible, TGF-produced targets must accurately reflect the flight 

dynamics of the aircraft that they represent.  

 

Currently, the aircraft dynamics incorporated in the TGF are based on the first principles 

of physics and aeronautics. The models provide the performance characteristics needed to 

support high fidelity simulations. The TGF incorporates fuel burn models environmental 

(weather) effects. Additionally, the modeled aircraft are representative of commercial air 

traffic in the US National Air Space (NAS). 

  

As future simulations are developed or brought to the Technical Center, higher fidelity 

will be required to identify NAS operational safety and performance issues. The TGF is 

prepared to increase its fidelity and operational connectivity required to meet the 
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demands by the other FAA programs and simulators. The goal of this project has been to 

develop and maintain a high-fidelity simulation capability to meet the needs of the FAA 

in operating, testing, and evaluating its NAS.  

 

1.2 Scope 

This document provides a defendable, theoretical foundation for the engineering theory, 

principles and algorithmic design of the Aircraft Dynamics Model. The engineering 

analysis starts with the first principles of aircraft flight mechanics and derives a 6-degree- 

of-freedom model. Simplifying assumptions are presented and the model is reduced to 4 

degrees of freedom. The propagation of the aircraft on the surface of the Earth is 

discussed along with all the necessary reference frames to support all current conventions 

and interfaces. The modeling the effects of wind are included. The flight control system 

necessary to fly the aircraft through the fundamental maneuvers of climb, descent, 

turning to a heading, and speed changes is discussed. The control theory necessary to 

implement the flight control system is discussed in detail. The guidance system used to 

plan the aircraft’s path and to capture and follow routes is presented. Different types of 

route capture methods are discussed such as the automatic and vectored route capture 

methods. Navigation systems and their error models are presented, including the 

modeling of VOR/DME, ILS, and GPS navigation. The guidance and navigation models 

are used by the algorithms that meet speed and altitude constraints, and so these are 

presented along with them. Pilot modeling and pilot flight technical error are also 

included. The document concludes with a section on verification and validation, the 

process by which the various features of the simulation are tested and verified.  

 

1.3 Organization 

Since much of the analysis is of a highly technical nature, an effort has been made to 

organize the document so that specific topics are easy to access. This is done to avoid the 

need to read the entire document to find a specific point. The document is organized into 

13 sections, each of which is summarized here.  

 

• Section 2 provides a detailed analysis of the aircraft equations of motion. The 4 

degree-of-freedom aircraft model is derived from first principles. All trajectory 

propagation material is also covered. The numerical integration techniques are also 

discussed.   

• Section 3 develops a linear model of the longitudinal dynamics and analyzes the 

longitudinal modal properties of the system. Transfer function analysis of the 

longitudinal dynamics is also performed  

• Section 4 provides a detailed analysis of the feedback control aspects of the 

longitudinal control system. The section provides insight into control strategies for 

capturing a desired state. There are different feedback control strategies for different 
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flight phases; each of these control systems is discussed, and a strategy for calculating 

the required gains is developed. 

• Section 5 deals with the design of the feedback control algorithms that stabilize the 

aircraft and drive it to the desired state. It also provides the algorithms for managing 

the control strategies and transitioning between them. 

• Section 6 documents the decision process that led to the final conclusion that gain 

scheduling would not be necessary. By carefully choosing the reference flight 

condition, it is possible to choose one set of gains that will work for the aircraft’s 

entire flight envelope. 

• Section 7  discusses the lateral directional control system  

• Section 8 discusses the lateral guidance system. The purpose of the lateral guidance 

system is to steer the aircraft to follow routes or other simulation pilot commands. 

• Section 9 discusses the navigation systems and navigation error modeling The 

purpose of navigation error modeling is to model the variances that occur in aircraft 

flight paths as a result of imperfect navigation information.  

• Section 10 discusses the logic used to make aircraft meet speed and altitude 

constraints at fixes and to meet the restrictions of terminal flight phases (take-off and 

landing). 

• Section 11 documents the flight technical error algorithms that model the inability of 

the pilot or autopilot to steer the aircraft perfectly along the desired course.  

• Section 12 describes verification and validation of the aircraft simulation. The section 

starts with testing of climbs, descents, and speed changes and continues with testing 

of the guidance algorithms. The navigation error and flight technical error are also 

tested. Finally, the terminal flight phases are tested.  
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2. The Aircraft Equations of Motion 
The purpose of this section is to provide a theoretical foundation for the aircraft equations 

of motion that are used in the TGF aircraft simulation.  The foundation will start with the 

definition of reference frames.  Once the reference frames have been defined, we will 

derive the equations of motion for the full six-degree-of-freedom (DOF) model.  Then, 

we will apply several assumptions to the equations of motion to reduce the 6-DOF model 

to a 4-DOF model.   

2.1  The Definition of the Body Frame and the Inertial Frame 

As discussed in Nelson (1989), the two major reference frames used in the derivation of 

the aircraft equations of motion are the aircraft body-fixed reference frame (denoted with 

a b subscript) and the inertial reference frame (denoted with an i subscript).  The aircraft 

body frame’s origin is fixed at the aircraft’s center of gravity.  The body frame has its ˆ bx -

axis aligned with the nose of the aircraft so that the aircraft’s nose points in the positive 

ˆ
bx  direction.  The positive ˆ by  direction points out along the aircraft’s starboard wing. 

The ˆbz axis points down to complete a right handed coordinate frame. Figure 2.1 shows 

the body fixed reference frame.    

 

Figure 2.1. The body fixed reference frame aligned with an aircraft 

 

The inertial reference frame is fixed on a point on the Earth’s surface and is aligned so 

that the positive ˆ ix  axis points to true North and the positive ˆ iy  axis points to true East.  

The ˆ iz  axis points down and is normal to the surface of the Earth. This frame is 

commonly referred to as the North-East-Down, or NED frame. 

 

The body reference frame can assume any orientation with respect to the inertial frame. 

Figure 2.2 illustrates the relationship between the body and inertial reference frames. The 

orientation of the body frame with respect to the inertial frame is usually described by an 

Euler sequence of rotations.  The ordering of the rotations is critical to the orientation of 

x̂bŷb

ẑb
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the body frame.  It is difficult to visualize the actual sequence of rotations in a single 

drawing, so the sequence is illustrated with three separate drawings.  Figure 2.3 shows 

the Euler sequence of rotations that is used to quantify the aircraft’s orientation.  

 

Figure 2.2.   The relationship between body and inertial reference frames 

 

 
Figure 2.3.  The 3-2-1 Euler sequence of rotations used to quantify the aircraft's orientation 

 

 

The first rotation is through the angle ψ  about the ˆ iz  axis to an intermediate reference 

frame, which is arbitrarily denoted with a ‘1’ subscript.  The second rotation is through 

the angle θ  about the 
1ŷ  axis to another intermediate reference frame, which is denoted 

with a ‘2’ subscript.  The final rotation is through the angle φ  about the 
2x̂  axis to the 

body frame.  The angles ψ , θ , and φ  are referred to as the heading, pitch, and roll 

angles, respectively.  

 

x̂iŷi

ẑi

x̂b

ŷb

ẑb
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ẑ1
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ŷ2ŷ1,
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ŷ1

ψ

ẑ1,

x̂i

ŷi
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ŷ
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The conversion between the inertial frame and the body frame of the aircraft is 

accomplished using direction cosine matrices. The first cosine matrix establishes the 

relationship between the inertial frame and the first intermediate reference frame.  

Equations (2.1), (2.2), and (2.3) quantify the relationship between the individual 

rotations.  The nomenclature Cθ  and Sθ  are simplified notation for cosθ  and sinθ .  This 

is done for all trigonometric manipulations to simplify the ultimate expression. From the 

rotation sequence shown in Figure 2.3, one can write the following direction cosine 

matrices shown in Equations (2.1) through (2.3). 

 

1

1

1

0

0

0 0 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

i

i

i

x C S x

y S C y

z z

ψ ψ

ψ ψ

     
     

= −     
          

    (2.1) 

 

2 1

2 1

2 1

0

0 1 0

0

ˆ ˆ

ˆ ˆ

ˆ ˆ

x C S x

y y

z S C z

θ θ

θ θ

−     
     

=     
          

    (2.2) 

 

2

2

2

1 0 0

0

0

ˆ ˆ

ˆ ˆ

ˆ ˆ

b

b

b

x x

y C S y

z S C z

φ φ

φ φ

    
    

=     
    −    

    (2.3) 

 

The product of these three direction cosine matrices results in the complete conversion 

between the inertial frame and the body frame as shown in Equation (2.5).   

 

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

b i

b i

b i

x C S C S x

y C S S C y

z S C S C z

θ θ ψ ψ

φ φ ψ ψ

φ φ θ θ

  −       
        

= −        
        −        

  (2.4) 

 

ˆ ˆ

ˆ ˆ

ˆ ˆ

b i

b i

b i

x C C C S S x

y C S S S C C C S S S S C y

z S S C S C S C C S S C C z

θ ψ θ ψ θ

φ ψ φ θ ψ φ ψ φ θ ψ φ θ

φ ψ φ θ ψ φ ψ φ θ ψ φ θ

 −   
    

= − + +    
    + − +    

  (2.5)  

 

The inverse of Equation (2.5) is shown in Equation (2.6). 
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ˆ ˆ

ˆ ˆ

ˆ ˆ

i b

i b

i b

x C C C S S S C S S C S C x

y C S C C S S S S C C S S y

z S S C C C z

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ φ θ φ θ

 − + +   
    

= + − +    
    −    

  (2.6)  

2.2 Definition of Flight Mechanics Nomenclature 

Next, certain flight mechanics nomenclature must be defined.  This nomenclature 

consists of the various linear and angular velocities associated with the motion of the 

aircraft as well as the forces and moments that are applied.  Figure 2.4 provides an 

illustration of the nomenclature as it applies to the aircraft.  

 

 

Figure 2.4. The forces, moments, velocity components and angular rates of an aircraft 

Table 2.1 summarizes the nomenclature definition so that the mathematical symbols can 

be associated with the proper terminology. The reader will note that the term L is used to 

notate the rolling moment. Further along in the text, L will also be used for lift. This is an 

unfortunate consequence of the merging of two engineering disciplines, dynamics and 

control and aerodynamics. To avoid confusion, this document will notate the rolling 

moment using L  instead of L , which is reserved for lift.  

 

Table 2.1.  Definition of  flight mechanics nomenclature 

 Roll Axis ˆ b
x  Pitch Axis ˆ b

y   Yaw Axis ˆb
z  

Angular rates p q r 

Velocity components u v w 

Aerodynamic Force Components X Y Z 

Aerodynamic Moment Components L  M N 

Moments of Inertia 
x

I  yI  zI  

Products of Inertia 
yzI  

xz
I  xyI  

x̂bŷb

ẑb

pL,

qM,

rN,

Z,w

X,u
,vY
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It is important to note that the forces defined in Table 2.1 are aligned with the body 

frame.  These forces do not directly coincide with the more commonly known 

aerodynamic forces of lift and drag.  The forces of lift and drag are defined with respect 

to another reference frame, the wind frame, discussed in the following section. 

2.3 The Wind and Stability Reference Frames 

We need to derive two additional reference frames to resolve the relationship between the 

commonly known aerodynamic forces of lift and drag and the body forces of the 6-DOF 

model. These reference frames are the stability frame and the wind frame as defined by 

Stevens & Lewis (1992). The wind frame is used to describe the motion of the air mass 

relative to the aircraft body frame and allows us to describe the aerodynamic forces on 

the aircraft. 

 

These stability and wind frames characterize the angle of attack, α , and the side-slip 

angle, β .  These aerodynamic angles are defined by means of coordinate rotations from 

the body frame. The first rotation, about the ˆ b
y  axis, defines the stability frame and the 

angle is the angle of attack, α . With no sideslip, α  is the angle between the aircraft ˆ b
x  

axis and the aircraft velocity vector relative to the surrounding air mass.  The angle of 

attack is positive if the rotation about the ˆ
b

y  axis was negative.  This ‘backwards’ 

definition is the unfortunate result of merging the disciplines of aerodynamics and 

classical kinematics.  

 

The second rotation leads to the wind frame, and the side-slip angle is the angle between 

the stability frame and the wind frame. An aircraft has sideslip if its velocity vector 

relative to the air mass is not in the plane defined by ˆ b
x - ˆb

z .  The rotation is about the z-

axis of the stability frame, ˆ st
z , and β  is defined as positive if the rotation about the ˆ st

z  

axis is positive.  The wind frame’s x-axis, ˆ w
x , is aligned with the aircraft’s velocity 

vector, which is the vector sum of the body frame velocities, ˆ ˆ ˆ
b b b

ux vy wz= + +V .  The 

other axes, ˆ w
y and ˆ w

z , are orthogonal to ˆ w
x  and to each other.  Figure 2.5 illustrates the 

orientation of the x-axes of the stability and wind frames with respect to the body frame. 

  

Equations (2.7) - (2.9) show the direction cosine matrices that define the transformations 

between the coordinate frames.  

 

0

0 1 0

0

ˆ ˆ

ˆ ˆ

ˆ ˆ

st b

st b

st b

x C S x

y y

z S C z

α α

α α

     
     

=     
     −     

     (2.7) 
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Figure 2.5.   Illustration of the stability and wind coordinate systems 

 

 

0

0

0 0 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

w st

w st

w st

x C S x

y S C y

z z

β β

β β

     
     

= −     
          

     (2.8) 

 

0

ˆ ˆ

ˆ ˆ

ˆ ˆ

w b

w b

w b

x C C S C S x

y S C C S S y

z S C z

β α β β α

β α β β α

α α

     
     

= − −     
     −     

    (2.9) 

 

Using the direction cosine matrices, we can derive expressions for the angles, α  and β .  

We start with the definition of true airspeed. The true airspeed of an aircraft, a
V , is 

defined as the magnitude of the aircraft’s velocity relative to the air mass surrounding the 

aircraft. By definition, the only component of this velocity is along the ˆ w
x  axis of the 

wind frame.  That is to say the total aircraft velocity is aligned with the ˆ w
x  axis.  Written 

in equation form, ˆ
a w

V x=V .  Using the inverse of the direction cosine matrix in equation 

(2.9), we can define the body frame velocities in terms of the true airspeed and the angles 

α  and β .   

  

0 0

0

ˆ ˆ

ˆ

ˆ

b a w

b

b

ux C C S C S V x

vy S C

wz C S S S C

β α β α α

β β

β α β α α

 − −   
    

=     
    −    

   (2.10) 

 

The three resulting scalar equations are shown below in Equations (2.11)-(2.13). 

 

x̂b

ŷb

ẑb

x̂st

x̂w

α

β

Va
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au V C Cβ α=       (2.11) 

 

av V Sβ=       (2.12) 

 

aw V C Sβ α=       (2.13) 

 

Rearranging Equation (2.12) gives us an expression for side-slip.   

 

1sin
a

v

V
β −=       (2.14) 

 

Taking the quotient of w/u, we can derive an expression for angle of attack as shown in 

Equations (2.15)-(2.16). 

  

tan
a

a

V C S Sw

u V C C C

β α α

β α α

α= = =     (2.15) 

 

1tan
w w

u u
α −= ≈      (2.16) 

 

Assuming that the angle of attack is small, it can be approximated as just the ratio w/u.  

Often, this expression is used to substitute α  for w.   

 

Using the wind reference frame, we can resolve the relationship between the commonly 

known aerodynamic forces of lift, drag and thrust (L, D, and T, respectively), and the 

body forces of the 6 DOF model.  We can see from the direction cosine matrix (2.9) that 

if we model the aerodynamic forces on an aircraft in terms of lift, drag, and thrust, 

equations (2.17) through (2.21) are expressions for X, Y, and Z forces in the body frame. 

The aircraft weight is not included because it is not an aerodynamic force.  

 

ˆ ˆˆ
a b w wTx Lz Dx= − −∑F      (2.17) 

 

0 0 0

0

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

b w b

b w b

b w b

Xx C C S C S Dx Tx

Yy S C y y

Zz C S S S C Lz z

β α β α α

β β

β α β α α

 − − −     
      

= +      
      − −      

  (2.18) 

 

X T DC C LSβ α α= − +      (2.19) 
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Y DSβ= −        (2.20) 

 

Z DC S LCβ α α= − −       (2.21) 

 

Note that the actual forces and moments of the full 6 DOF model include much more than 

simply lift, drag, and thrust.  Unsteady aerodynamics play a large role in the 

determination of the complete force and moment model.  

 

There is one more term that must be formally defined:  the flight path angle, γ.  The flight 

path angle is the angle that a velocity vector makes with the horizontal. If the velocity 

vector is expressed in surface coordinates, the vertical component is simply the vector 

magnitude multiplied by the sine of the flight path angle. We can develop an expression 

for the flight path angle relative to the air, aγ , by transforming the air speed vector to the 

surface frame. This is accomplished via a sequence of rotations between the wind frame 

and the surface frame. 

 

1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0

a w

a a

C S C S C C S C S V x

C S S C S C

S C S C C S S S CV

θ θ ψ ψ β α β α α

φ φ ψ ψ β β

φ φ θ θ β α β α αγ

     − − −     
          

= −          
          − −         

x

y

a

a

V

V

ˆ

sin

 

 

Working with the third row equation, the air speed falls out and we can solve for γa. 

 

( )( )1sina C C S S S C S C Cα β θ φ β φ α β θγ −= − +    (2.22) 

 

The ‘a’ subscript on the flight path angle denotes that it is an aerodynamic flight path 

angle. This is to say that it is the aircraft’s flight path angle relative to the air mass. The 

aircraft’s flight path angle relative to the ground is generally different because of the 

influence of winds. 

 

We can see from Equation (2.22) that if both α  and β  are zero, the Euler angle θ  

reduces to aγ . 

2.4 The Derivation of the Six Degree of Freedom Equations of Motion 

Once the reference frames and nomenclature are defined, the derivation of the equations 

of motion is straightforward.  The linear equations of motion are derived by summing the 

forces to the time rate of change of linear momentum ( mass acceleration× ).  The 

acceleration of the aircraft’s velocity is determined using the basic kinematic equation, 

which states that the total acceleration of the aircraft with respect to the inertial frame is 
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equal to the derivative of the velocity vector with respect to the body frame plus the cross 

product of the angular velocity between the inertial and body frames and the velocity 

vector.  The basic kinematic equation is shown in Equation (2.23) 

 

i

b

d

dt t

∂ 
= = + × 

∂ 

V V
a ω V      (2.23) 

where  

 

• ai is the acceleration of the aircraft with respect to the inertial frame 

• 
d

dt

V
 is the total time derivative of the velocity vector 

• 
bt

∂ 
 

∂ 

V
 is the derivative of the velocity vector as seen in the body frame 

• ωωωω is the angular velocity of the body frame relative to the inertial frame:

ˆ ˆ ˆ
b b b

px qy rz= + +ω   

• V is the velocity vector in the body frame: ˆ ˆ ˆ
b b b

ux vy wz= + +V . 

 

The expression for the aircraft’s acceleration is shown in Equation (2.24) and simplified 

in Equation (2.25). 

 

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
b b b b b b b b b

d
ux vy wz px qy rz ux vy wz

dt
= + + + + + × + +

V
� � �   (2.24) 

 

( ) ( ) ( )ˆ ˆ ˆ
b b b

d
u qw rv x v ru pw y w pv qu z

dt
= + − + + − + + −

V
� � �   (2.25) 

 

To complete the equations of motion, we must equate the acceleration terms to the 

applied forces according to Newton’s second law (F=ma). Table 2.1 summarizes the 

aerodynamic forces applied to the aircraft; however, the aircraft weight must also be 

considered.  The aircraft’s weight always acts downward in the ˆ i
z direction.  Using the 

direction cosine matrix, the aircraft’s weight (mg) can be represented in body frame 

coordinates. 

 

ˆ ˆˆ ˆ
i b b bmgz mgS x mgC S y mgC C zθ θ φ θ φ= − + +    (2.26) 

 

where 

• m  is the aircraft’s mass 

• g  is the gravitational acceleration.  
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Summing the forces and equating the force terms yields the final expression. 

 

( ) ( ) ( )
( ) ( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ

b b b

b b b

X mgS x Y mgC S y Z mgC C z

m u qw rv x m v ru pw y m w pv qu z

θ θ φ θ φ− + + + +

= + − + + − + + −� � �
 (2.27) 

 

Equation (2.27) can be broken down into its individual components to yield the three 

force equations of motion. 

 

( )X mgS m u qw rvθ− = + −�      (2.28) 

 

( )Y mgC S m v ru pwθ φ+ = + −�      (2.29) 

 

( )Z mgC C m w pv quθ φ+ = + −�     (2.30) 

 

The moment equations are equal to the time rate of change of angular momentum.  The 

angular momentum of the aircraft is equal to the inertia matrix multiplied by the angular 

velocities. The expression for angular momentum is shown in Equation (2.31) where the 

symbol H is used to denote the angular momentum.   

 

0

0 0

0

ˆ

ˆ

ˆ

x x xz b

y y b

z zx z b

H I I px

H I qy

H I I rz

−     
     

=     
     −     

    (2.31) 

 

Because aircraft are symmetric, two products of inertia, yzI  and xyI , are zero and 

therefore are eliminated from the angular momentum expression.  Equation (2.31) can be 

expanded to three scalar equations. 

 

ˆ ˆ
x x b xz b

H I px I rz= −       (2.32) 

 

ˆ
y y bH I qy=        (2.33) 

 

ˆ ˆ
z zx b z b

H I px I rz= − +       (2.34) 

 

The time rate of change of each of these expressions is calculated using the ‘Basic 

Kinematic Equation’ of the form shown in Equation (2.35). 
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b

d

dt t

∂ 
= + × 

∂ 

H H
ω H      (2.35) 

 

When the kinematic expressions are summed to their respective moments, the three 

moment equations are derived.  The three moment equations are shown in Equations 

(2.36)-(2.38). For convenience   
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Table 2.2 summarizes the fundamental kinematic and dynamic equations of motion. 

 

( ) ( )x xz z yL I p I r pq qr I I= − + + −� �     (2.36) 

 

( ) ( )2 2

y x z xzM I q rp I I I p r= + − + −�     (2.37) 

 

( )xz z y x xzN I p I r pq I I I qr= − + + − +� �     (2.38) 

 

So far we have developed the full 6-DOF equations of motion, which are quite involved.  

The next step in developing a 6-DOF model, well beyond the scope of this discussion, 

would be to derive expressions for the forces and moments that act on the aircraft. For a 

complete discussion, refer to Nelson (1989). The forces and moments that are used in the 

6 DOF model are quite different from the simplified subset presented in Equations (2.19) 

through (2.21).  The true forces and moments are complicated expressions that require 

estimates of unsteady aerodynamic data to handle properly. Our next task is to simplify 

the 6-DOF equations of motion to 4-DOF equations using some simplifying assumptions.  

 

However, first we will briefly discuss the modal characteristics of the 6-DOF model so 

we better understand which characteristics are most likely going to influence trajectory 

propagation.  

2.5 The modal Properties of the Six Degree of Freedom Model 

Before simplifying the equations of motion to 4-DOF, it is useful to discuss the five 

modes of motion associated with the 6-DOF model. Three of the modes are second order 

and two of the modes are first order making up an 8
th

 order system.  These modes are: 
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Table 2.2.  Summary of kinematic and dynamic equations of motion 

Grouping  Equations 

 

 

Force Equations 

 

( )X mgS m u qw rvθ− = + −�                      (2.28)                      

( )Y mgC S m v ru pwθ φ+ = + −�                  (2.29)                  

( )Z mgC C m w pv quθ φ+ = + −�                 (2.30)                 

 

 

Moment Equations 

 

( ) ( )x xz z yL I p I r pq qr I I= − + + −� �              (2.36)             

( ) ( )2 2

y x z xzM I q rp I I I p r= + − + −�            (2.37)          

( )xz z y x xzN I p I r pq I I I qr= − + + − +� �           (2.38)          

  

Body Angular Velocities in 

terms of Euler angles and 

Euler rates 

 

 

 p Sθφ ψ= −� �                                                (2.39)                                               

   q C C Sφ θ φθ ψ= +� �                                      (2.40)                                     

   r C C Sθ φ φψ θ= − ��                                      (2.41)                                     

 

Euler rates in terms of Euler 

angles and body angular 

velocities 

 

 

qC rSφ φθ = −�                                              (2.42) 

p qS T rC Tφ θ φ θφ = + +�                                 (2.43) 

( )qS rCφ φψ θ= +� sec                                  (2.44) 

  

 

• Short Period (Longitudinal plane) 

• Phugoid   (Longitudinal plane) 

• Dutch Roll  (Lateral-Directional plane) 

• Roll (Lateral-Directional plane) 

• Spiral (Lateral-Directional plane). 

 

The longitudinal dynamics control the forward speed and altitude of the aircraft.  There 

are two second-order oscillatory modes comprising the longitudinal dynamics.  These 

modes are referred to as the short period and the Phugoid mode. 

 

The lateral-directional dynamics consist of one second-order mode and two first-order 

modes.  These modes control the turning dynamics of the aircraft within the lateral plane.  
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2.5.1 The Short Period Mode 

The short period mode is named because it is the faster of the two modes.  It is the mode 

that defines the aircraft’s pitching about its center of gravity.  The short period mode 

controls the dynamics between elevator deflection and the aircraft’s resulting lift 

coefficient.  Generally, the short period mode is over ten times faster than the Phugoid 

mode. 

2.5.2 The Phugoid Mode 

The Phugoid mode is the slower of the two longitudinal modes.  We can think of the 

Phugoid mode as a gradual interchange between potential and kinetic energy about some 

equilibrium altitude and airspeed.  The Phugoid mode is characterized by changes in 

pitch attitude, altitude, and velocity at a nearly constant lift coefficient.  Usually, the 

Phugoid is over ten times slower than the short period mode and therefore the Phugoid 

will have the dominant influence over the aircraft’s trajectory. This is illustrated in Figure 

2.7. 

  

 
 

Figure 2.6.  Illustration of the Short Period mode causing oscillations about the aircraft’s center 

of gravity 

 

 
 

Figure 2.7.  Illustration of the Phugoid mode 

   

2.5.3 The Dutch Roll Mode 

The Dutch Roll mode is the only oscillatory mode of the lateral directional dynamics and 

is a combination of yawing and rolling oscillations.  The Dutch Roll gets its name from 

its resemblance to the weaving motion of an ice skater.  The Dutch Roll mode is mostly 

an annoyance to the pilot and passengers. The pilot can easily damp out the motion of the 

Dutch roll. The Dutch roll is illustrated in Figure 2.8. 
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Figure 2.8.  Illustration of the Dutch Roll mode 

2.5.4 The Roll Mode 

The roll mode characterizes how fast an aircraft can achieve a steady state roll rate after 

an aileron deflection.  It is a first-order mode and therefore does not oscillate.  The roll 

mode can influence the trajectory of an aircraft by causing a delay between the time a 

turn is commanded and when a steady state turn rate is achieved. The Roll mode is 

illustrated in Figure 2.9. 

  

 

Figure 2.9.  Illustration of the Roll mode 

 

2.5.5 The Spiral Mode 

The spiral mode characterizes an aircraft’s spiral stability about the vertical axis. This 

mode controls whether or not an aircraft returns to level flight after a small perturbation 

in roll angle.  When this mode is unstable, the aircraft will have a tendency to depart from 

level flight and enter a spiral dive. 
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  Figure 2.10. Illustration of an unstable Spiral mode 

 

If the mode is stable, the aircraft remains in level flight.  Usually the mode is stable.  

Even if the mode is not stable, the pilot will compensate to maintain straight and level 

flight. 

2.6 Simplifying the Equations of Motion to Four Degrees of Freedom 

The first step to simplifying the 6-DOF equations of motion is to make two assumptions 

about the aircraft in flight.  These assumptions are that: 

 

1. The aircraft’s pitch dynamics, characterized by the short period mode, are fast enough 

to be assumed instantaneous. 

2. The pilot maintains ‘coordinated flight’.   

 

We first concentrate on the implications of coordinated flight.  Constraining the aircraft 

to coordinated flight implies that the side-slip angle is always zero.  This in turn implies 

that there is never any side velocity, v, any side-force Y, or any yawing moment N.  This 

reduces Equation (2.29), the side force equation, to Equation (2.45).  The reduced 

Equation (2.45) is no longer a differential equation.  Furthermore, the yaw rate derivative, 

r� , is neglected, reducing the yawing moment differential equation to an algebraic 

expression as shown in Equation (2.46). The rolling moment derivative is removed by the 

substitution of the rolling moment equation in for p� .  

 

( )gC S ru pwθ φ = −       (2.45) 

 

( ) ( )
( )0

xz z y

xz y x xz

x

L I pq qr I I
I pq I I I qr

I

+ − −
= − + − +   (2.46) 
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Similarly, the side velocity, v, drops out of the other force equations as well. 

 

( )X mgS m u qwθ− = +�      (2.47) 

 

( )Z mgC C m w quθ φ+ = −�      (2.48) 

 

Now, concentrate on the first assumption that the aircraft’s pitch dynamics are fast 

enough to be neglected.  This implies that the aircraft is able to command an angle of 

attack instantaneously.  Therefore, we neglect the derivatives, w�  and q� .  The terms 

( )2 2p r−  and rp  in the pitching moment equation are second order effects and can be 

neglected. The pitching moments are, therefore, assumed to be in equilibrium, consistent 

with instantaneous angle of attack dynamics. 

 

 0M =  (2.49) 

 

The net effect is that the Z force equation is reduced to an algebraic expression. 

 

( )Z mgC C m quθ φ+ = −     (2.50) 

 

This leads to an explicit expression for the pitch rate. 

 

Z mgC C
q

mu

θ φ− −
=      (2.51) 

 

To solve for angle of attack, the pitching moment, M, must be expanded into its 

individual terms as shown in Equation (2.52).  This is merely a formality because we will 

shortly show how we can remove angle of attack entirely. 

 

 0
eo eM M M Mα δα δ= + + =  (2.52) 

 

The terms in (2.52) are: 

• oM  : The zero angle of attack pitching moment 

• Mα  : A derivative relating pitching moment changes to changes in angle of attack 

• 
e

Mδ : A derivative relating the effect of elevator deflection on angle of attack. 

 

Solving for angle of attack yields Equation (2.53). 
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eo eM M

M

δ

α

δ
α

− −
=

 (2.53) 

 

The steady-state angle of attack is an algebraic function of the elevator deflection, 

exclusively.  This implies that the lift coefficient, 
LC , also is very nearly an exclusive 

function of the elevator deflection as shown in Equations (2.54) and (2.55).    

 

o eL L L L eC C C C
α δ
α δ= + +     (2.54) 

 

e

o e

o e

L L L L e

M M
C C C C

Mα δ

δ

α

δ
δ

− − 
= + + 

 
   (2.55) 

 

where 

• 
oLC  is the zero angle of attack lift coefficient 

• LC
α

 is the lift curve slope with respect to angle of attack 

• 
eLC

δ
 is the effect of elevator deflection on lift coefficient. 

 

Although the angle of attack has been removed from our equations, we can still calculate 

it for animation purposes. Furthermore, the elevator deflection can be completely 

bypassed in favor of the aircraft’s lift coefficient as the primary longitudinal control 

input.  This is convenient because the terms relating lift coefficient, angle of attack and 

elevator deflection are not provided in commonly available aircraft models.   

 

Using equations (2.52) and (2.54), we can derive an expression for the angle of attack 

that depends only on the coefficient of lift. This can be used for display purposes, and the 

reader is reminded that the expression assumes instantaneous angle of attack dynamics. 

 

 

o e

e

e

e

o
L L L

L L

M
C C C

M

M
C C

M

δ

α δ

δ

α

δ

α

− +

=
−

 (2.56) 

 

This equation can be re-written in a simpler form, requiring only two airframe constants. 

 

 oL L

L

C C

C
α

α
′−

=
′

 (2.57) 
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The primed constant in the numerator of equation (2.57) is an effective trim lift 

coefficient, while the primed constant in the denominator is an effective pitch sensitivity.  

For display purposes, suitable nominal values are 0.2 and 10, respectively, to yield the 

angle of attack in radians. 

 

Returning to the model development, we assume that the angle of attack is small. This 

assumption combined with the previous assumption of coordinated flight implies that the 

wind and body frames are very nearly aligned with each other. The alignment of the wind 

and body frames implies the following: 

 

1. True airspeed, a
V , and u are aligned.  Therefore a

V  can be substituted for u in the 

differential equations. 

2. The lift force, defined as pointing in the ˆ w
z−  direction, is now aligned with the Z  

force in Equation (2.30).  (Z = -L) 

3. The drag force, defined as pointing in the ˆ w
x− , is aligned with the Thrust, defined as 

being aligned with the ˆ b
x  axis.  (X = T – D) 

4. The Euler angle θ  reduces to a
γ , the flight path angle. 

 

These simplifications greatly reduce the equations of motion.  Equations (2.58) through 

(2.60) show what remains of our differential equations.  

 

aT D mgS mVθ− − = �      (2.58) 

 

a

L mgC C
q

mV

θ φ−
=      (2.59) 

 

( ) ( )x xz z yL I p I pq qr I I= − + −�     (2.60) 

 

These equations need to be rearranged into a useful form.  We start with Equation (2.58), 

which can easily be rearranged as an expression for true airspeed.  

 

a

T D
V gS

m
θ

−
= −�      (2.61) 

 

Rearranging Equation (2.59) into an expression for flight path angle takes more steps. We 

start by relating the pitch rate, q, to the Euler angle θ  by using the relations from  
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Table 2.2.   

 

a

L mgC C C S

mV C C

θ φ θ φ

φ φ

θ ψ
−

= −� �      (2.62) 

 

Using   
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Table 2.2 again, we can substitute for yaw rate, r, in terms of Euler angles in Equation 

(2.45).  

 

a

gC S S

V C C C C

θ φ φ

θ φ θ φ

ψ θ= + ��      (2.63) 

 

Combining equations (2.62)  and (2.63) result in the final expressions for θ�  and ψ� . 

 

a

LC mgC

mV

φ θθ
−

=�      (2.64) 

 

  
a

LS

mV C

φ

θ

ψ =�       (2.65) 

 

Using the fact that the flight path angle and the pitch angle are identical for this model, 

we substitute a
γ  for θ .  This protects us from confusion that might arise as a result of 

our simplified Euler angle expressions. 

 

a

a

a

LC mgC

mV

φ γ
γ

−
=�      (2.66) 

 

aa

LS

mV C

φ

γ

ψ =�       (2.67) 

 

The final equation of motion to manipulate is the rolling moment equation.  This equation 

governs the rate at which an aircraft can establish a bank angle.  The rolling moment 

equation as written is a function of roll and pitch rates and the moments of inertia.  

 

( ) ( )x xz z yL I p I pq qr I I= − + −�      (2.68) 

 

We choose to neglect the higher order terms and reduce the rolling moment equation to 

its linear form of xL I p= � .  We will use standard stability and control derivatives to 

define the rolling moment. 

 

ap a xL p L I pδ δ+ = �      (2.69) 

where 
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• pL  is the rolling moment derivative with respect to roll rate 

• 
a

Lδ is the rolling moment derivative with respect to aileron deflection 

• a
δ  is the aileron deflection. 

 

The parameter, δa, is more accurately a linearized aileron deflection parameter. At small 

deflection angles it is mathematically equivalent to the aileron deflection. However, this 

linear form of the lateral dynamics allows us later to solve the system analytically while 

removing the aileron deflection parameter from the system of equations. We will take one 

further step to redefine our derivatives to include 1/ x
I  so that we can write our 

differential equation in first order form. 

 

ap ap L p Lδ δ= +�      (2.70) 

 

Table 2.3.  The equations of motion for the 4-DOF model 

Name Equation 

 

True Airspeed Equation 

 

 

aa

T D
V gS

m
γ

−
= −�                 (2.61) 

 

 

The Flight Path Angle 

Equation 

 

a

a

a

LC mgC

mV

φ γ
γ

−
=�                  (2.66) 

 

 

The Heading Equation 
aa

LS

mV C

φ

γ

ψ =�                          (2.67) 

 

The Roll Rate Equation 

 

ap ap L p Lδ δ= +�                    (2.70) 

 

 

Since we do not have much data for pL  and 
a

Lδ , we will have to use engineering 

judgment as to the best values for a specific aircraft.  These numbers will be terms that 

must be ‘tweakable’ so that the user can tune them to suit. The final form of the equations 

of motion, without wind effects, is shown in Table 2.3.  

 

An alternative derivation of the equations of motion may be found in Mukai (1992). 
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2.7 The Addition of Winds 

The aerodynamic forces on an aircraft are created by its motion relative to the 

surrounding air. The air itself is in motion relative to the inertial frame. If the wind is 

constant, then the air mass is not accelerating and we need only consider the vector sum 

of the air mass and the aircraft’s air speed to propagate over the earth model. If the wind 

is not constant, then we must consider the contributions of an accelerating frame to the 

equations of motion.  

 

We make two important simplifying assumptions before implementing winds. The first is 

that the wind contains no vertical component. 

 

ˆ ˆ
wx i wy iV x V y= +wV       (2.71) 

 

where 

 

• w
V  is the air mass velocity with respect to the inertial frame 

• wx
V  is the x component of the air mass velocity aligned with true North 

• wyV  is the y component of the air mass velocity aligned with true East. 

 

The second assumption is that the wind varies only with altitude; that is, the lateral and 

temporal variations are zero, dVw/dx = 0, dVw/dy = 0, dVw/dt = 0. 

 

The addition of winds into the system is done by creating yet another reference frame.  

This frame, the air mass frame, is inserted in between the inertial frame and the wind and 

body frames. Recall that the wind and body frames are equivalent for our simplified 

model.  The air mass frame’s orientation is aligned with the inertial frame, but moves at a 

constant velocity with respect to the inertial frame.  The aircraft’s motion as described in 

the previous sections is now considered to be with respect to the air mass frame and not 

the inertial frame.  Knowing that the aircraft’s velocity is aligned with the ˆ w
x  axis we can 

determine the aircraft’s speed relative to the air mass in inertial coordinates.  

 

0

0

ˆ ˆ

ˆ ˆ

ˆ ˆ

a a a a

a a a a

a a a a

a i a w

a i w

a i w

V C C x C C C S S S C S S C S C V x

V C S y C S C C S S S S C C S S y

V S z S S C C C z

γ ψ γ ψ φ ψ φ γ ψ φ ψ φ γ ψ

γ ψ γ ψ φ ψ φ γ ψ φ ψ φ γ ψ

γ γ φ γ φ γ

   − + +  
     

= + − +     
     − −     

 (2.72) 

 

The velocity of the air mass relative to the inertial frame is presented below. The reader 

will note that we assume there is no vertical component to the wind.  
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The total aircraft velocity with respect to the inertial frame is then the sum of the air mass 

velocity with respect to the inertial frame and the aircraft’s velocity with respect to the air 

mass. The term Vi is the aircraft’s velocity with respect to the inertial frame or the sum of 

the aircraft’s true airspeed and the wind velocity. 

 

( ) ( )ˆ ˆ ˆ
a a ai wx a i wy a i a i

V V C C x V V C S y V S zγ ψ γ ψ γ= + + + −V   (2.73) 

 

The terms in Equation (2.73) can be rewritten to introduce the terms x
V , yV , and h� . 

 

ˆ ˆ ˆ
i x i y i iV x V y hz= + −V �      (2.74) 

 

These terms are defined as follows: 

 

• x
V  is the velocity of the aircraft with respect to the inertial frame in the true North 

direction 

• yV  is the velocity of the aircraft with respect to the inertial frame in the true East 

direction 

• h�  is the altitude rate or vertical speed of the aircraft. 

 

Later, the terms x
V  and yV  are used when defining the latitude rate and longitude rate of 

the aircraft. Assuming that the winds are constant, Equation (2.73) is sufficient for 

modeling the dynamics.  However, if the winds are not constant, then wind gradient 

terms must be added to the differential equations.  Often, winds vary with altitude.  If this 

is the case, the equations of motion must be re-derived accounting for the variations in 

winds with respect to altitude.  

 

As the body frame is accelerating relative to the air mass, we introduce an inertial force 

due to the variation in wind speed, Fw. 

 

0

0

in

w cr

C S V

F m S S C S C V

C S S C C

θ θ

φ θ φ φ θ

φ θ φ φ θ

  −
  

= −   
  −   

�
�

�    (2.75) 

 

In above equation,  inV�  and crV�  are the change in air mass velocity in-track and cross-

track, respectively. 

 

Now the Force Equations are updated to include, Fw. 
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( )rvqwumCVmmgSX in −+=−− ��
θθ     (2.76) 

 

( )pwruvmCVmSSVmSmgCY crin −+=−−+ ���
φφθφθ   (2.77) 

 

( )qupvwmSVmCSVmCmgCZ crin −+=+−+ ���
φφθφθ   (2.78) 

 

The same simplifications used to simplify Equations (2.28)-(2.30) in are applied 

Equations (2.76)-(2.78). 

 

ain VCVgS
m

DT
aa

�� =−−
−

γγ      (2.79) 

 

acrin rVCVSSVSgC
aa

=−− φφγφγ
��     (2.80) 

 

acrin qVSVCSVCgC
m

L
aa

−=+−+
−

φφγφγ
��    (2.81) 

 

Equation (2.79) is the new True Airspeed Equation. To determine the effects on the 

Flight Path Angle Equation and the Heading Equation, use   
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Table 2.2 and Equations (2.80) & (2.81). 
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SSV
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a
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a
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a

�
��

� +−−=    (2.83) 

 

Solving the system of equations given by Equations (2.82) & (2.83) gives the updated 

Flight Path Angle Equation and the Heading Equation in terms of inV�  and crV� . 

 

a

in

aa V

SV

V

gC

mV

LC
θθφθ

�
� +−=     (2.84) 

 

θθ

φψ
CV

V

CmV

LS

a

cr

a

�
� −=      (2.85) 

To find inV�  and crV� , use igfW  and cgfW  ,the in-track gradient factor and the cross-track 

gradient factor, respectively.  They are defined as follows: 

 

aa
S

dh

dV
C

dh

dV
W

wywx

igf ψψ +=     (2.86) 

 

aa
C

dh

dV
S

dh

dV
W

wywx

cgf ψψ +−=    (2.87) 

 

igfW  and cgfW are related to inV�  and crV�  by the simple relations below: 

 

a
SVWhWh

h

V
V aigfigf

in

in γ==
∂

∂
= ���    (2.88) 

 

a
SVWhWh

h

V
V acgfcgf

cr

cr γ==
∂

∂
= ���    (2.89) 

 

The resulting equations of motion including wind terms are shown in Table 2.4 

Table 2.4.  The equations of motion including wind gradients 
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Equation Name 

 

True Airspeed Equation 

 

a a aa igf a

T D
V gS W V S C

m
γ γ γ

−
= − −�   (2.90) 

 

 

Flight Path Angle Equation 

 

2a

aa igf

a

LC mgC
W S

mV

φ γ

γγ
−

= +�           (2.91) 

 

 

Heading Equation 

 

a

a

a
C

S
W

CmV

LS
cgf

a γ

γ

γ

φψ −=�                  (2.92) 

 

 

Roll Rate Equation 

 

ap ap L p Lδ δ= +�                               (2.93) 

 

  

2.8 Trajectory Propagation over an Earth Model 

The kinematics of an aircraft have been determined in a coordinate system fixed to the 

surface of the earth. We now turn our attention to propagating the aircraft over the 

surface of the Earth.  The equations that characterize this motion are developed in three 

steps. These steps are: 

 

1. Develop a set of reference frames 

2. Introduce an Earth model (the propagation equations are dependent on the selected 

model). 

3. Develop the kinematic expressions relating the aircraft’s velocity in the surface frame 

to changes in latitude and longitude. 

2.8.1 Elliptic Earth Reference Frames 

There are three major reference frames used for the analysis.  These reference frames are  

 

• DIS Coordinates - Since it is necessary that the TGF simulator conform to the DIS 

standard (Institute of Electrical and Electronics Engineers [IEEE], 1993) for 

representing aircraft trajectory propagation, and the DIS frame is an Earth-centered, 

Earth-fixed frame with rectangular coordinates, we choose to use it for our 

development. We will use a 'DIS' subscript to describe the coordinates of this frame. 

• Geodetic Coordinates - This frame (also known as Latitude-Longitude-Altitude) is 

commonly used in navigation. It uses angular coordinates (geodetic latitude and 
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longitude) and a position parameter (altitude). All are referenced to the local surface 

of the earth model. No tag is used to identify this frame, as context alone is sufficient. 

• Surface Coordinates - A reference frame on the surface of the earth aligned such that 

the x-y plane is tangent to the surface with the x-axis pointing to the north and the y-

axis pointing to the east. This frame is often referred to as the North-East-Down 

(NED) frame. We will use an ‘s’ subscript for brevity of notation when writing 

equations.  Surface Coordinates and Geodetic Coordinates are orthogonally aligned. 

 

The observant reader will notice that the aircraft equations of motion were calculated 

assuming a flat Earth and that we here assume the development frame was the North-

East-Down frame. This implies necessarily that earth rotation and the variation of the 

gravity vector with position over the earth were ignored in developing the aircraft 

equations of motion.  This simplification limits our mathematical model to the flight of 

aircraft only.  The model will not properly handle the flight of sub-orbital craft and 

spacecraft such as intercontinental ballistic missiles, satellites, or the space shuttle.  The 

model is adequate for all vehicles traveling under Mach 3. 

 

For trajectory propagation, since we cannot assume a flat Earth, the original inertial 

reference frame, denoted with an ‘i’ subscript, is modified for the elliptic Earth. Thus, we 

align our newly defined ‘surface’ frame, with the inertial frame ‘i’. The surface frame 

then moves with the aircraft so as to provide a frame that is tangent to the Earth’s surface 

for interfacing with trajectory propagation equations, and parallel to the aircraft’s 

horizontal plane of flight for interfacing with the aircraft's flat-Earth dynamics. All 

velocities that were originally defined with respect to the ‘i’ frame, are now taken to be 

with respect to the ‘s’ frame.   

 

Figure 2.11 shows the relationship between the DIS and surface frames. The DIS-frame 

is fixed in the center of the earth with the DISẑ -axis out the North pole. The Plane 

described by the DISx̂ - and the DISŷ -axes is in the plane of the equator. The DISx̂  axis is 

through zero degrees longitude, or the prime meridian. The surface (NED) frame is 

tangent to the surface of the earth and is centered in an object propagating along the 

Earth's surface. It is denoted with an 's' subscript for surface. The ˆ sz  axis points 

downward and is normal to the surface of the earth. The ˆ sx - and ˆ sy -axes define a plane 

tangent to the surface of the earth. The longitude and latitude angles describe the rotation 

between the two frames. 
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Figure 2.11. The DIS frame and the surface frame 

 

 

Figure 2.12.  The longitude and latitude rotations 

The orientation of the reference frames is such that at zero degrees longitude and latitude, 

the two reference frames are orthogonally aligned.  Furthermore, the surface frame 

conforms to the orientation normally used with aircraft as shown in Figure 2.2. Figure 2.2 

shows the relationship between the surface frame and the aircraft's body fixed frame. The 

angular rotation from the DIS-frame to the s-frame can be thought of as an Euler 

sequence of rotations.  The ordered rotations are illustrated in Figure 2.12. 

 

The first rotation is longitude.  Longitude ( � ) is rotated about the positive DISẑ -axis in a 

right handed sense from the 'DIS' frame to an intermediate frame noted with an 'in'. The 

DISẑ -axis coincides with the inx̂ -axis in the intermediate frame. The rotation yields a 

direction cosine matrix in Equation (2.94). 
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0 0 1

0

0

in DIS

in DIS

in DIS

x x

y y

z z

     
     

= −     
     − −     

� �

� �

ˆ ˆ

ˆ ˆsin cos

ˆ ˆcos sin

       (2.94) 

 

The geodetic latitude ( µ ) is rotated about the positive in
ŷ -axis in a left-handed sense 

from the 'in' frame to the surface frame denoted with a 's'. The transformation to the 

surface frame defined in this way, as shown in Equation (2.95), keeps geodetic latitude 

positive in the Northern hemisphere. 

 

0

0 1 0

0

s in

s in
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x x

y y

z z

µ µ

µ µ

     
     

=     
     −     

ˆ ˆcos sin

ˆ ˆ

ˆ ˆsin cos

    (2.95) 

 

The product of these two matrices is the complete direction cosine matrix between the 

two reference frames. 

 

 

0 0 0 1

0 1 0 0

0 0

s DIS

s DIS

s DIS

x x

y y

z z

µ µ

µ µ

       
       

= −       
       − − −       

� �

� �

ˆ ˆcos sin

ˆ ˆsin cos

ˆ ˆsin cos cos sin

 (2.96) 
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 (2.97) 

 

The inverse of a rotation matrix is simply its transpose, and so the transformation of a 

vector from the NED-frame to the DIS-frame is easily obtained. As an example, the 

velocity in DIS coordinates is given by… 

 

 

0

DIS s

µ µ

µ µ

µ µ

− − − 
 

= − − 
 − 

V V

� � �
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sin cos sin cos cos

sin sin cos cos sin

cos sin

 (2.98) 

 

The rotation matrix of equation (2.97) can transform a vector described in the DIS 

coordinate system to the North-East-Down coordinate system. The unfortunate 

consequence of this format is that the geodetic latitude and longitude of the origin of the 

vector are unknown to the vector described in DIS coordinates, and so equation (2.97) is 

not very useful. This problem is resolved in section 2.8.4 below.  
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2.8.2 The Earth Model and its Kinematic Parameters 

The TGF Aircraft Dynamics Model uses the WGS-84 earth model, as defined by 

National Imagery and Mapping Agency (NIMA, 1997). The WGS-84 earth model is a 

spheroidal earth model as shown in Figure 2.13 where:  

 

• a is the equatorial radius, or the semi-major axis of the spheroid, which is 6378137.0 

meters, or 72 092565 10. ft×  

• b is the semi-minor axis given by b = a(1-f) where f is the Earth Flattening 

Parameter .  (1/f  = 298.257223563) 

 

A polar cross section of the spheroidal earth is depicted in Figure 2.13. It illustrates the 

flattening of the spheroid at the poles as well as a graphical representation of three 

commonly used latitude definitions:  geocentric latitude, λ, parametric latitude, θ, and 

geodetic latitude, µ. The side view illustrates how the cross-section of the flattened earth 

can be represented as a rotation from a circle. The angle subtended in this rotation is the 

arcsine of the eccentricity, e, of the meridional ellipse. The point O is the center of the 

earth. B is the North Pole. The semi-major (equatorial) axis, OA, of the meridional ellipse 

has length a, the semi-minor (polar) axis, OB has length b. From the diagram we can see 

that b = a cos(arcsin(e)). The eccentricity of the ellipse is defined as… 

 

 
2

2

2
1

b
e

a
= −  
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Figure 2.13.  The Spheroidal Earth model 

 

Figure 2.14.  Triangle Representing Slope of Meridional Ellipse and Incremental Latitude 

Change 

Mathematically, it is most convenient to describe the geometry of the ellipse via the 

parametric latitude, θ. A point P on the ellipse has coordinates (a cos θ, b sin θ). The 

point P' is the point on the circumscribing circle (of radius a) the same distance from the 

polar axis as P. The latitude used in navigation is the geodetic latitude, µ, which is 

defined as the angle between the northerly horizon at P and the polar axis. This definition 

yields a relationship between the parametric and geodetic latitudes:  the tangent of the 

geodetic latitude is the negative inverse of the slope of the spheroid at P (i.e., the change 

Rµdµ 

µ 

b
 c

o
sθ

 d
θ

 

a sin θ dθ 
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in equatorial displacement divided by the change in the poleward displacement). This is 

illustrated in Figure 2.14. Rµ is the radius of curvature of the meridional arc at P. 
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d b b d
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Figure 2.15. Alternate Triangle of Relationship Between Geodetic and Parametric 

Latitude on the Meridional Ellipse 

It should be noted that equation (2.99) applies only to points on the spheroid. From 

inspection of equation (2.99) we can create another triangle (Figure 2.15). From 

inspection of Figure 2.15 we write… 
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Similarly,… 
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From Figure 2.14 the displacement along the meridian is given by, 

 

 

( )

2 2 2 2

2 2

2

3
2 2 2

sin cos

1 cos

1

1 sin

R d a b d

a e d

e
a d

e

µ µ θ θ θ

θ θ

µ
µ

= +

= −

−
=

−

 

 

So that the radius of curvature of the meridional ellipse at P is given by, 
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e
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 (2.102) 

 

We here define one more parameter that becomes useful in our kinematic analysis. This 

parameter is labeled as Dµ in Figure 2.13 and we shall call this parameter the Geodetic 

Distance to the Polar Axis. It should not be confused with the radius of curvature at P, 

which is somewhat larger. By inspection, 

 

 cos cosD aµ µ θ=  

 

From equation (2.101) 

 
2 2
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1 sin
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 (2.103) 

 

A similarly defined parameter, although not illustrated, is the Geodetic Distance to the 

Equator, 
eq

Dµ . 

 

 sin sin
eq

D bµ µ θ=  

 

From equation (2.100) 
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 ( )21
eq

D D eµ µ= −  (2.104) 

2.8.3 Kinematics Relating the Coordinate Frames 

The velocity vector equation (2.74), has been developed from the aircraft aerodynamics 

in terms of the surface, or NED, coordinates. We can equate this velocity vector to the 

time rate of change of the position vector in the surface coordinate system. The position 

vector, opR , is easily expressed in terms of DIS coordinates. We transform opR  to 

surface coordinates via equation (2.97). Once this transformation is done, opR  is 

expressed in terms of latitude and longitude. Consequently, the time rate of change of 

opR  will yield a velocity vector in terms of latitude and longitude rates. With the velocity 

vector expressed in terms of aircraft dynamics and in terms of latitude and longitude 

rates, we can solve for the latitude and longitude rates for propagation over our earth 

model.  

 

 

Figure 2.16 Position Vector on the Spheroid 
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By inspection of Figure 2.16, the component of opR  parallel to the equator from the polar 

axis to the point P is, 

 

 ( )cos
eq

R D hµ µ= +  (2.105) 

 

This is resolved along the DISx̂  and DISŷ  axes by multiplying by the cosine and sine of the 

longitude. Similarly, the component of opR  parallel to the polar axis from the equator to 

the point P is 

 

 ( ) ( )( )2sin 1 sin
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And so the position vector in DIS coordinates is obtained immediately in two forms by 

inspection. 
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The position vector in surface coordinates is obtained by pre-multiplying by the rotation 

matrix in equation (2.97) 
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We need to take the derivative of the position vector to get an expression for the aircraft’s 

velocity. The derivative is defined in (2.110). 
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From equation (2.103) 
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The angular rotation of the surface frame relative to the Earth-fixed DIS frame is easily 

defined in mixed coordinates, keeping in mind that the latitude rotation is a negative 

rotation about the ˆ
s

y -axis. 
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Transforming the longitude rotation to surface coordinates via equation (2.97), we get… 
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Expanding the cross product term,  
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we end up with the final expression for velocity in Equation (2.113). 
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From equation (2.74), the velocity of the aircraft in the surface frame is  
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We can set the x and y components of equation (2.74) equal to those of equation (2.113) 

and solve for the latitude and longitude rates. The z components produce an identity. 
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These expressions can be rearranged in terms of �� and µ�  as shown in equations (2.114).  
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2.8.4 Transforming DIS to Lat/Lon 

There may be a future need to transform DIS coordinates to the standard position 

coordinates of latitude, longitude, and altitude, e.g., when TGF is integrated with external 

aircraft motion applications that output DIS coordinates. The equations transforming DIS 

to latitude-longitude position are the inverse of equation (2.108). Unfortunately, an 

accurate representation of the inverse of equation (2.108) is ungainly. An equivalent 

iterative algorithm (Borkowski, 1989) used to obtain the needed accuracy is more 

aesthetically appealing. 

 

The equatorial position vector, 
eqR , as defined in equation (2.105), is the vector sum of 

the x- and y- components of the DIS coordinates of 
opR .  

 

 2 2

DIS DISeq
R x y= +  

 

The longitude is obtained from DIS coordinates immediately. 

 

 arctan DIS

DIS

y

x

 
=  

 
�  (2.115) 

 

From equation (2.107), we have 

 

 
cos cos

sin sin

eq

DIS

R a h

z b h

θ µ

θ µ

= +

= +
 (2.116) 

 

Eliminating h and µ, this system of equations can be shown to reduce to the form shown 

in Borkowski (1989) in which we need to solve for the parametric latitude, θ. Borkowski 

showed that this form is superior in simplicity and accuracy over the range of latitudes. 

 

 ( ) ( )2sin sin 2 0f cθ θ θ= − Ω − =  (2.117) 

 

The parameters Ω and c are constant for each position. 
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( ) ( )

1

2 2

2 2

tan DIS

eq

eq DIS

bz

aR

a b
c

aR bz

−
 

Ω =   
 

−
=

+

 (2.118) 

 

As with the inverse of equation (2.108), an analytical solution of equation (2.117) is 

ungainly. An iterative approach using the Newton-Raphson method provides suitable 

accuracy and speedy convergence. The Newton-Raphson method requires the derivative 

of f(θ). 

 

 ( ) ( )2 cos cos 2f cθ θ θ′ = − Ω −    (2.119) 

 

A suitable first approximation to the parametric latitude is provided by assuming zero 

altitude. This is obtained from equations (2.116). 

 

 1

0 tan DIS

eq

az

bR
θ −

 
=   

 
 (2.120) 

 

Subsequent values of the parametric latitude in the Newton-Raphson iterative method are 

defined by the following equation. 

 

 
( )
( )1

n

n n

n

f

f

θ
θ θ

θ
+ = −

′
 (2.121) 

 

To obtain one-foot accuracy requires θ settling within about10
-9

. Once θ is determined, 

the geodetic latitude, µ, is obtained from equation (2.99). This allows the use of equations 

(2.116) to find the altitude. By inserting the trigonometric identity,  

 

 2 2sin cos 1µ µ+ =  

 

equation (2.116) can be manipulated to equation (2.122). 

 

 ( ) ( )cos cos sin sin
eq DIS

h R a z bθ µ θ µ= − + −  (2.122) 

 

There are simpler forms for obtaining the altitude, but Borkowski prefers equation 

(2.122) for its uniform accuracy over the range of latitudes. 
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2.9 The Derived State Variables  

The equations of motion are referred to as the state equations because they are the 

fundamental equations that govern the aircraft’s motion. Each state equation is named for 

the state variable for which it calculates a derivative.  In our case, we have four state 

variables a aV pγ ψ    that are governed by the equations in Table 2.3. There are 

also other important values that are not state variables but rather functions of the state 

variables. We call these values derived state variables.  There are five important derived 

state variables: 

 

• IAS
V : The indicated Airspeed 

• M : The Mach number 

• GT
ψ : The ground track heading 

• GS
V : The ground speed 

• ψ� : The turn rate 

• f : The fuel flow/burn rate 

• W : The aircraft weight 

• h : The aircraft altitude 

 

The indicated airspeed is the speed measurement indicated on an Aneroid type airspeed 

indicator that is hooked to an aircraft’s pitot static system.  The airspeed indicator 

measures the difference between the static and ram-air pressures and approximates an 

airspeed from the pressure difference.  The indicated airspeed is not a good estimate of 

the true airspeed. At higher altitudes the difference between indicated and true airspeed 

may be in error by as much as 100 kts.  To simulate the reading on an airspeed indicator, 

Equation (2.123) is used to convert from Mach number to indicated airspeed. 

 

( )1

( 1)
* 2

0

2 1
1 1 1 1

1 2
IAS

o

p
V a M

p

γ

γ γ
γγ

γ

−

−

 
   −    = + − + −   −       
 

  (2.123) 

 

The terms in Equation (2.123) are defined as follows: 

 

• a*: The speed of sound. 

• γ: The ratio of specific heats for air (not to be confused with the flight path 

 angle).  1 4.γ =  under normal conditions. 

• p: The ambient pressure. 

• p0: The sea-level pressure. 
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To convert indicated airspeed to Mach number, requires rearranging Equation (2.123).  

Since this algebraic manipulation is not trivial, only the result is provided here. 

  

1

2 1

*

0

2 1
1 1 1 1

1 2

o IAS
p V

M
p a

γ
γ γ

γ
γ

γ

−

−

 
       −  = + − + −     −         
 

  (2.124) 

 

The Mach number is the ratio of the true airspeed and the speed of sound as shown in 

Equation (2.125).        

*
aV

M
a

=       (2.125) 

 

The ground speed and the ground track heading are derived from the velocity terms first 

presented in Equation (2.74).   

 

2 2

G x y
V V V= +      (2.126) 

 

1tan
y

GT

x

V

V
ψ −  

=  
 

     (2.127)   

 

The turn rate of the aircraft is calculated using the heading equation. Equation (2.65) is 

reprinted here for convenience.   

 

aa

LS

mV C

φ

γ

ψ =�       (2.65) 

 

There are two ‘derived’ state variables that are not merely functions of the integrated 

states.  These values must be integrated; however, we separate them from the formal 

integration of the differential equations because they do not require the rigorous 

integration procedure used to numerically integrate the state equations.  These two 

‘derived’ states are altitude, h , and aircraft weight, W .  The altitude is simply the 

integration of the altitude rate and the aircraft weight is the integration of the fuel burn 

rate.  The method of integration is discussed in the numeric integration section. 
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2.10 The Airframe Model 

The airframe model is adapted from Seagull Technology’s AMT (Aircraft Modeling 

Tool), which is adapted from EUROCONTROL’s Base of Aircraft Data (BADA) (Nuic, 

2009).  The primary purpose of the airframe model is to calculate the aerodynamic forces 

applied to the aircraft.  These forces are lift and drag as defined in Anderson, 1989.  

 

The lift of the aircraft is calculated using Equation (2.128). 

 

L = qSwCL      (2.128) 

 

The drag of the aircraft is calculated using Equation (2.129).   

 

D = qSwCD      (2.129) 

 

The terms for these equations are as follows: 

 

• L Lift  

• D Drag  

• Sw Wing Reference Area  

• q Dynamic pressure 

• CD Drag coefficient  

• CL Lift coefficient  

 

To calculate the dynamic pressure Equation (2.130). is used.   

 

21

2
aq Vρ=       (2.130) 

 

where the terms in the equation are defined as follows:  

 

• ρ air density  

• Va true airspeed  

 

The air density is obtained from the atmosphere model, which is discussed in Section 

2.12.  The lift coefficient is an input that is generated by the control laws.  The drag 

coefficient is calculated using Equation (2.131). 

 

( )
2

o min dragD D L LC C K C C= + −     (2.131) 

 

where 
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• 
oDC  The zero lift drag coefficient 

• 
min dragL

C  The lift coefficient at minimum drag 

• K  The induced drag coefficient  

 

The drag polar equation comes from classical incompressible aerodynamics.  The 

compressibility effects of high speed flight are currently neglected. 

 

Each aircraft in the simulation has five flap settings and a spoiler that can be deployed 

when needed. The flap settings are named for their respective flight phases. Each flap 

setting is described by its own drag polar. 

 

• Clean configuration 

• Initial climb configuration 

• Take off configuration 

• Approach configuration 

• Landing configuration 

 
Figure 2.17.  Maximum thrust vs altitude for a DC-9/MD80 

 

2.11 The Engine Model 

The engine model is responsible for providing two important parameters to the rest of the 

model.  These parameters are the maximum thrust available and the fuel burn rate. We 

use the BADA parameters (Nuic, 2009) to perform these calculations. The form of the 

mathematical models for thrust and fuel burn depends on the aircraft’s installed 

configuration for thrust production. The ADM uses three separate mathematical 

thrust/fuel burn models for three engine types:  turbofan, turboprop (i.e., gas-turbine 

engine attached to propeller), and piston-prop (i.e., internal combustion engine attached 

to propeller). As an example of the implementation, we present here the thrust and fuel 
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burn models for the turbofan engine installation. While the models for other installations 

are of a similar format, the reader is referred to Nuic, 2009 for further detail. 

 

The maximum thrust available to the turbofan-powered aircraft at any given time is a 

function of the local air density. Figure 2.17 shows the maximum thrust available for a 

DC-9 aircraft as the altitude is increased.  The thrust and fuel burn models represent the 

air density in terms of pressure altitude. The maximum available thrust is computed using 

Equation (2.132).   

 

1 3

2

21
, ,

,

max c c

c

T T

T

h
T C C h

C

 
= − + 

 
 

     (2.132) 

 

where: 

 

• h  is altitude  

• maxT  is the maximum climb thrust  

• 
c iTC
,
, are the BADA coefficients fitting actual thrust performance to altitude 

 

The fuel burn rate is calculated using the following equations. 

 

1

2

1 a
f

f

V
C

C
η

 
= +  

 
     (2.133) 

 

f Tη=       (2.134) 

 

3

4

1min f

f

h
f C

C

 
= −  

 
     (2.135) 

 

where:  

 

1. η  is the thrust specific fuel consumption 

2. a
V  is the true airspeed  

3. T    is the Thrust  

4. f   the fuel flow rate  

5. minf   is the minimum fuel rate  

6. h    is the altitude  
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7. 
if

C , are the BADA coefficients fitting actual fuel burn performance to altitude and 

speed 

 

The fuel flow rate is normally calculated using Equations (2.133) and (2.134); however, 

there is a lower bound on the fuel burn, which is calculated using Equation (2.135).  If the 

fuel burn calculated using Equations (2.133) and (2.134) is lower than the minimum fuel 

burn rate, the minimum fuel burn rate is returned as the fuel burn rate.  Figure 2.18 shows 

the fuel burn rate for a DC-9 at maximum thrust for various airspeeds. 

 

 

Figure 2.18.  Fuel Consumption at maximum thrust (both engines) for a DC-9/MD80 

2.12 The Standard Atmosphere Model 

Since aircraft operate in the Earth’s atmosphere and their lift and drag characteristics 

depend on the properties of that atmosphere, it is essential to be able to define these 

properties.  To do this, the International Standard Atmosphere (ISA) model (International 

Civil Aviation Organization, 2000) is implemented.  The derivation of the governing 

equations is omitted since they are commonly available (e.g., Anderson, 1989).   

  

There are two separate regions to the Earth’s atmosphere that we are concerned with.  

The first region is the gradient region where temperature drops off linearly with altitude.   

The gradient region spans from the Earth’s surface to 11 km (~36100 ft).  The second is 

an isothermal region where the temperature is constant.  The isothermal region extends to 

20 km (~65600 ft). Our model is not concerned with altitudes above 20 km.  Figure 2.19 

illustrates the temperature variation of the standard atmosphere.   
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Figure 2.19.  Temperature vs altitude for the standard day atmosphere 

   

In the gradient layer (less than 11 km), the temperature of the ambient air surrounding the 

aircraft is calculated using Equation (2.136). 

 

amb sl
T T ah= −       (2.136) 

 

where 

 

• sl
T   :    The sea level temperature (15.0 °C) 

• amb
T :   The ambient temperature  

• h  :      The altitude  

• a   :     The temperature lapse rate in the gradient layer (6.5 °C/km)  

 

In the isothermal layer, the temperature stays constant at -56.5 °C.  

 

( )11 56 5amb slT T a km C= − = − °.      (2.137) 

 

The speed of sound is strictly a function of the ambient air temperature.  It is calculated 

using the thermodynamic relation in Equation (2.138)    
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Figure 2.20.  The speed of sound variation with altitude for the standard day atmosphere 

 

*a RTγ=       (2.138) 

 

where  

 

• a*  is the speed of sound,  and  

• γ  is the ratio of specific heats for air.  

 

p

v

c

c
γ =       (2.139) 

 

where pc  is the constant pressure specific heat and v
c  is the constant volume specific 

heat.  The term R  is the ideal gas constant and T  is the absolute ambient air temperature.  

Figure 2.20 shows the relationship between the speed of sound and altitude for a standard 

day. 

 

Figure 2.21 illustrates the pressure variation with altitude for the standard day. If the 

aircraft is in the gradient layer, the pressure ratio of the aircraft is calculated using 

Equation (2.140).   

 

   

g
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amb amb

sl sl

p T

p T

−
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    (2.140) 
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Figure 2.21.  Pressure variation with altitude for the standard atmosphere 

 

where 

 

• amb
p :   The ambient pressure.  

• psl:  The sea level pressure.   

• g :  Gravitational acceleration. 

• R:   Ideal gas constant. 

 

If the aircraft is in the isothermal layer, the pressure ratio of the aircraft is calculated 

using Equation (2.141). 

 

11
iso

g
h kmRTamb iso

sl sl

p p
e

p p

− − 
= 

 

( )( )

   (2.141) 

 

where the subscript ‘iso’ refers to conditions at the bottom of the isothermal layer (11 

km). 

  

The final equation, which calculates ambient density, is valid regardless of the 

atmospheric region.  It is the ideal gas equation of state. 

 

amb
amb

amb

p

RT
ρ =       (2.142) 

 

The relationship between density and altitude is illustrated in Figure 2.22. 
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Figure 2.22. Density variation with altitude for the standard atmosphere 

2.13 Integration Techniques 

The TGF simulation as designed requires the real time integration of a series of nonlinear 

differential equations and one linear differential equation, Equation (2.93).  Since 

nonlinear differential equations cannot be solved analytically, some type of numerical 

integration method must be employed. There are many techniques available, so it is 

important to find a technique well-suited to the needs of a particular problem. There are 

several items to consider when choosing a numerical algorithm.  These are: 

 

1. Accuracy required. 

2. Frequency of the dynamics to be simulated. 

3. The computational efficiency required. 

4. The stability of the algorithm. 

 

The most demanding integration requirements for the TGF project stem from the Phugoid 

mode of the longitudinal dynamics.  This mode generally has a period of 30 sec, which is 

not very fast.  Therefore, a sophisticated numerical algorithm need not be applied.  

Furthermore, the integrations that are not influenced by the Phugoid mode require even 

less computational precision.  For the Phugoid influenced equations, a good second order 

method should suffice.  For the non-Phugoid influenced equations, a first order method is 

quite adequate.  

 

2.13.1  The Second Order Runge-Kutta Method 

A second order Runge-Kutta method is chosen for those equations that are influenced by 

the Phugoid mode.  This method, is simple and stable.  It is self starting and does not 

require information from previous time steps.  It is slightly more computationally 

expensive than other methods such as an Adams-Bashforth method, but the use of the 

Adams-Bashforth method did not prove as stable as the Runge-Kutta method and 
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required a more complex algorithm because it is not self starting. These methods are 

discussed in detail in Hoffman (1992), or any other numerical method text. 

   

The second order Runge-Kutta algorithm is summarized below. Consider a state vector, 

X(k), at time step, k, and, t(k), the time at step, k.  These are the inputs to the numerical 

integrator.     

 

1

2

( )

( )
( )

( )
n

x k

x k
k

x k

 
 
 =
 
 
 

X
�

     (2.143) 

 

It is our objective to update the state vector to the next time step at (k+1).  To do this we 

must first calculate K0, the initial term of the Runge-Kutta integration sequence.  The 

numerical integration routine does not actually do this.  Instead, it uses a series of 

functions of the states and the independent variable, time, as shown in Equation(2.144).  

For our problem, the functions f1 - fn  are the state equations (2.61),  (2.66), and (2.67).  
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   (2.144) 

 

The numerical integration routine will take K0 and add it to the original state vector at 

time step (k) and then send the results back to the derivative functions. This results in K1. 
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The final step is to determine, X(k+1). 
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    (2.146) 

 

The equations that are integrated using the second order Runge-Kutta technique are 

Equations (2.61),  (2.66), and (2.67) or the true airspeed, flight path angle, and the 

heading angle state variable equations. 

 

2.13.2 The First Order Euler Method 

The first order Euler method is arguably the simplest numerical integration routine 

available.  Under most conditions, it is not considered adequate for actual simulation, but 

rather is used only as an instructional example.  However it is very inexpensive 

computationally, and is more than adequate for the very slow changes in altitude, position 

and weight changes occurring in the TGF model.  Using the same X(k)  vector defined in 

(2.143), the next time step, X(k+1), is easily calculated using Equation (2.147).   
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  (2.147) 

 

The quantities that are integrated by this method are as follows: 

 

• Latitude 

• Longitude 

• Weight 

• Altitude 

2.14 The Integration of the Roll Equation 

The roll equation is unique in our simulation because it is the only differential equation 

that is linear. Because the equation is linear, no numerical integration technique need be 

applied.  Furthermore, we can perform the loop closures of our lateral directional control 

logic within the analytic solution itself, eliminating the aileron deflection parameter, δa, 

via a linear control law.   
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2.14.1  The open loop roll rate and roll angle equations 

The roll mode is governed by Equation (2.93), which is reprinted below.  It is convenient 

to assign φ� , the derivative of the roll angle, to p, the roll rate.  This yields Equation 

(2.148).  These two equations yield the second order dynamics that characterize an 

aircraft’s roll angle in response to deflection of the ailerons.   

 

ap ap L p Lδ δ= +�     (2.93) 

 

pφ =�       (2.148) 

 

It is convenient to arrange the equations into state space representation.  

 

0

1 0 0
ap

a

p L p Lδ
δ

φφ

       
= +       
      

�

�
    (2.149) 

 

The system of equation (2.149) yields the lateral dynamic response to commanded 

ailerons. The desired system is one in which a desired roll angle is commanded and the 

aircraft responds accordingly, and so we move on to closing this loop.  

2.14.2 The closed loop system  

We here continue to describe the lateral dynamic system, equations (2.149), as a linear, 

time-dependent (LTD) system of equations. The system follows the common LTD 

vector-matrix form, 

 

 ( ) ( ) ( )t t tx = Ax + Bu� , (2.150) 

 

in which the state vector, x, contains the roll rate, p, and the roll angle, φ, and the control 

vector, u, contains only the aileron deflection parameter, δa. We accordingly define a 

linear feedback controller that is based on the difference between the desired and actual 

state. 

 

 ( )desu = K x - x  

 

The LTD system then becomes, 

 

 
( ){ }

( ) ( )−

des

des

x = Ax + B K x - x

x = A BK x + BK x

�

�
, (2.151) 
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In this case, the gain matrix is (2x1). 

 

 
p

k

kφ

 
=  
 

K  

 

Expanding into the nomenclature of our lateral dynamics, the closed-loop state space 

system is 

 

1 0 0 0
a a a a desp p p

des

p p pL L k L k L k L kδ δ φ δ δ φ

φ φφ

− −        
= +        

       

�

�
   (2.152) 

 

where des
p  is the desired roll rate and des

φ  is the desired roll angle.  We do not actually 

allow a command des
p  so we can eliminate it from Equation (2.152). 

 

00

1 0 0 0
a a ap p

des

p pL L k L k L kδ δ φ δ φ

φ φφ

− −        
= +        

       

�

�
   (2.153) 

 

The system we have developed is a second-order, linear system. It is completely defined 

by the modal properties of the standard second-order system, which we can determine by 

comparing the characteristic equation of equation (2.153) to that of the standard second-

order system. 

 

 ( ) ( )2 2 2det 2
a acl p p n n

s s L L k s L k s sδ δ φ ζω ω= − − − = + +I - A  

 

The modal properties are determined by inspection. 

 

( )
2

2
a

a

n p p

n

L L k

L k

δ

δ φ

ζω

ω

= − −

=
     (2.154) 

 

We can completely define the lateral dynamic response of different aircraft models by 

specifying the natural frequency, ωn, and damping ratio, ζ. We have essentially replaced 

four parameters with two. Additionally, the aileron deflection parameter has been 

eliminated. The primary control parameter in its place is the desired roll angle. We 

rewrite the LTD system as a function of the two modal properties and the desired roll 

angle. 
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2 2 02 0

1 0 0 0

n n n

des

p pζω ω ω

φ φφ

  − −      
= +        

       

�

�
   (2.155) 

2.14.3 An Analytical Solution in the Discrete Time Interval 

Our system is still in the form of equation (2.150), with the control vector, u, defined as 

the desired state vector. As stated earlier, because the system is linear, we can develop an 

analytical solution in the time interval of our computer simulation, thereby eliminating 

the need for numerical integration. The state vector is known at the beginning of the 

interval, the control vector is known and constant in the interval, and so we can solve 

equation (2.150) analytically for the state vector at the end of the interval.  

 

If the control vector were time-dependent in the interval, the well-known (e.g., Ogata, 

1990, eq. 11-41) analytical solution to equation (2.150) is given by equation (2.156). 

 

 
( )

0
( ) (0) ( )

t ttt e e d
τ τ τ− −

= + ∫
AAx x Bu  (2.156) 

 

The state transition matrix, e
At

, is defined as the inverse Laplace transform of the 

characteristic matrix. 

 

 ( )
11te s

−−  ≡ −
 

A I AL  

 

However, since the control vector of equation (2.155) is constant in the discrete-time 

simulation interval from 0 ≤ t ≤ ∆t, we can derive a simpler solution. The control vector 

is one-dimensional, containing only the desired bank angle and is independent of time in 

the interval. Let us rewrite equation (2.155) in a shortened notation, replacing the 

constant closed-loop matrices with Acl and Bcl, respectively. 

 

 ( ) ( )cl cl dest t φx = A x + B�  

 

We transform this equation to the Laplace domain and solve for x(s) 

 

 ( ) ( ) ( )
1 1

0

1
cl cl cl dess s s

s
φ

− −
− −x = I A x + I A B  (2.157) 

 

Equation (2.157) is now a convenient and transformable function of the Laplace variable. 

We arrive at a solution in the time domain by taking the inverse Laplace transform. This 

solution is identical to the solution obtained from equation (2.156) with constant control. 
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 ( ) ( ) ( )
1 11 1

0

1
cl cl cl des

t s s
s

φ
− −− −   − −    

x = I A x + I A BL L  (2.158) 

 

To allow for the complete range of lateral dynamic design, we choose to handle the 

solution differently for different values of the damping ratio, ζ. For the case of the under-

damped (ζ < 1) system, in which the system poles are complex conjugate pairs and the 

solution is oscillatory, it is convenient to keep equation (2.157) in the notation of the 

modal properties.  

 

 ( )

( )

22

2 22 2 2 2

0 22

2 22 2 2 2 2

( 1)
22 2

21

22 2

nn

n nn n n n
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n n

n nn n n n n

s

s ss s s s
s

s

s s ss s s s

ωω

ζω ωζω ω ζω ω
φ

ωω ζω

ζω ωω ζω ω ζω ω

  
−    + ++ + + +   

    +
    + ++ + + +       

x = x + (2.159) 

 

For the critically damped system (ζ = 1), the characteristic equation contains a double 

pole at s=-ωn and equation (2.157) can be rearranged into a more convenient form. 

 

 ( )
( ) ( )

( ) ( )
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( )

2 2

2 2 2

0

2

22 2

1 1
( )

2 11

n n

n n n

des

n

nn n

s

s s s
s

s

s ss s

ω ω
ω ω ω

φ
ω

ω
ωω ω

   
−   

+ + +   
   +
   

++ +     

x = x +  (2.160) 

 

For the over-damped system, the system poles are real. We solve the characteristic 

equation for the system poles at s=-a and s=-b, where, 

 

 
1

, 1 1
n

a b ζω
ζ

 
= ± −  

 
 

 

We can now rearrange equation (2.157) in terms of a and b. 

 

 ( )
( )( ) ( ) ( )

( )( )
( )

( )( )

( )( )

( )( )

0

1 1
( )

11
des

s
ab

s a s b s a s b s a s b
s ab

s a b

s s a s bs a s b s a s b

φ

   −   + + + + + +   
   + +
   

+ ++ + + +      

x = x +  (2.161) 

 

Table 2.5 presents Laplace transforms applicable to equation (2.157), as found in 

commonly available Laplace transform sources. From these Laplace transforms we can 
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write the solutions to equations (2.158) - (2.161) in the time domain. First we write the 

solution for the under-damped case. 

 

 

( )
( )

( ) ( )

( ) ( )
( )
( )

( )

( )

2 2

2 2

2 2

2 2

2

2
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t t

e t
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ω
ω ζ θ ω ζ

ζ ζ

φ φ
ω ζ ω ζ θ

ω ζ ζ

ω
ω ζ

ζ
φ

ω ζ θ
ζ

−

−

−

−

 
− − − − − 

− −    =    
   − − + 

− −  

 
− 

− +
 

− − + 
−  

(2.162) 

 

Next we write the solution for the critically-damped case. 

 

 
( )
( )

( )
( )

2 20

0 1

n n n n

n n n n n

t t t t

n n n

dest t t t t

n n

p t pe te te te

t te e te e te

ω ω ω ω

ω ω ω ω ω

ω ω ω
φ

φ φω ω

− − − −

− − − − −

      − −
      

+ − −      
= + (2.163) 

 

And, finally, we write the solution for the over-damped case. 

 

 
( )
( )

( ) ( )

( ) ( )

( )
( )

( )

( )

1

0

01 1 1
1

bt at at bt at bt

des

at bt at bt bt at

ab ab
be ae e e e e

p t pb a b a b a

t
e e be ae be ae

b a b a a b

φ
φ φ

− − − − − −

− − − − − −

−   
− − −      − − −

      
      − − + −
   − − −   

= + (2.164) 

 

Equations (2.162) - (2.164) (all of which are in the form of equation (2.158)) provide an 

analytical solution for the state vector at any time, t, when the initial value of the state 

vector (at t=0) is known. We can apply this solution across a discrete time interval, ∆t, by 

setting the initial state vector, [p(0);φ(0)] to that at the start of the interval and solving for 

[p(∆t);φ( ∆t)] using the relevant equation. The solution at the end of the interval is then a 

constant matrix function of the initial state and the desired bank angle. 

 

It is important to note that the constant matrices need only be calculated once for a given 

aircraft and time step size. (For a varying time step, the matrices would need to be 

calculated each time.) Once the initial calculations are made, the relations used to update 

the state from one time step to another are simple. For instance, consider an aircraft with 

critically damped lateral dynamics defined as below. 
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Table 2.5.  Common Laplace Transform Pairs 

Laplace Domain Time Domain 

( )

( )

( )

( )
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1 2 1
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sec
ω
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=

=
 

 

Discretizing the system for a 0.5 sec time step, using Equation (2.163) , the system 

becomes. 

 

0 9606 0 0392 0 03921

0 0098 0 9998 0 00021 des

p k p k
k

k k
φ

φ φ

−+      
= +      +       

. . .( ) ( )
( )

. . .( ) ( )
  (2.165) 
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If the state vector (roll rate and angle) is zero at the beginning of the interval and the 

control (desired roll angle) is 30° (0.523 rad), equation (2.165) would yield a roll rate of 

1.2 deg/sec and a roll angle of 0.006° at the end of the interval. Equation (2.165) is the 

only calculation that must be made to update between time steps.  

2.15 Design of the Lateral Control System 

We need to determine appropriate values for the modal properties of the lateral dynamics. 

While the lateral dynamic system was modeled using the stability derivatives, Lδa and Lp, 

and the control gains, kp and kφ, it was revealed above (refer to equations (2.154)) that we 

need only determine appropriate values for the frequency and damping ratio of the lateral 

dynamics. 

 

Let’s analyze the step response to the critically system with zero initial condition.  Table 

16.2 of Raymer (1999) provides the specifications for the rolling performance of military 

aircraft per MIL-F-8785 B. From this table, we can conclude that similar commercial 

aircraft should be capable of achieving a 30° bank in 1.5 – 2.0 seconds. We shall assume 

that this time guideline refers to a settling time, Ts, of about four time constants.  

 

 
4

s

n

T
ζω

=  

 

From equation (2.163), the roll equation with zero initial condition is as follows. 

 

 ( ) ( )1 n nt t

n des
t e te

ω ωφ ω φ− −− −=  

 

Figure 2.23 shows the response of this equation using a 30-degree desired bank angle, a 

natural frequency of 2 rad/sec.  The reader will note that the modal properties used to 

create Figure 2.23 correspond to a time constant of two seconds. At a settling time of two 

seconds, the roll angle is within about 10% of the desired state.  We can create aircraft 

models with faster lateral dynamics by increasing the time constant, ζωn. 
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Figure 2.23. Roll mode response to a 30 degree desired bank angle 
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3. The	Examination	of	the	Longitudinal	Dynamics	
It can be argued that the majority of the effort put forth to build a successful feedback 

control system is spent trying to understand the plant that is to be controlled. This 

certainly is the case with the nonlinear longitudinal aircraft dynamics. The insight 

developed is a fundamental tool used to make intelligent decisions regarding feedback 

control strategy.  This chapter deals with the development of solid insight into the plant 

dynamics, in this case the longitudinal dynamics of the aircraft. To develop insight, 

several tasks are performed. These tasks are: 

 

• Develop a linear model of the longitudinal dynamics 

• Analysis of longitudinal modal properties 

• Transfer function analysis of the longitudinal dynamics. 

 

The linear model of the aircraft dynamics is a fundamental tool that allows for the modal 

analysis and the examination of the response to inputs via the transfer functions. Modal 

analysis of the linear model enables identification of the physical properties that affect 

the modal properties of the system. Finally, certain transfer functions are created from the 

linear model that give insight into the different feedback control strategies that can be 

used. It should be noted that the linear model of the longitudinal dynamics is not 

replacing its nonlinear parents in the dynamic simulation; it is merely being used as a 

learning tool. 

3.1 The Linear Model of the Longitudinal Dynamics 

The modeling equations for the aircraft dynamics, as presented in Table 2.3, are nonlinear 

with the exception of Equation (2.70). This nonlinearity limits our ability to perform an in 

depth study into the behavior of the system of equations and also precludes the design of 

a feedback control system.  To overcome this limitation, a common approach in feedback 

control is to develop a linearized version of the system of equations.  

 

In our linear modeling of the system of equations, we choose to separate the longitudinal 

dynamics from the lateral-directional dynamics.  We can do this because the longitudinal 

modes and the lateral-directional modes are only lightly coupled (Nelson, 1989). For the 

longitudinal case, we constrain the aircraft to not turn. 

 

The general form of a non-linear dynamic system is a representation of the state vector as 

a non-linear differential equation, and the output vector as a separate non-linear function. 

Both functions are generally dependent on the state, control, and time. 
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( )

( )

,

,

t

t

x = f x,u

y = g x,u

�
 (3.166) 

 

In this system, x is the system’s (in our case, the aircraft’s) state vector, u is the system’s 

control vector, y is the system’s output vector. The control law is user-defined and is 

typically based on driving the observable output to a desired condition. While it is not 

typical to express a generalized control law, we can present one here to illustrate that, 

once the state and desired output are known, the system has a unique solution. 

 

 ( )du = u y, y  

 

In classical control theory, a linear, time-dependent (LTD) state-space is represented by 

the following system. 

 

 
( ) ( ) ( )

( ) ( ) ( )

t t t

t t t

x = Ax + Bu

y = Cx + Du

�
 (3.167) 

 

In this system, A, B, C, and D are constant matrices. The state vector is a collection of 

variables that completely describes the system’s state at any given time. Our longitudinal 

state vector includes true airspeed, Va, flight path angle, γa, and altitude, h. The control 

vector is the system’s control inputs. Our longitudinal control vector includes lift 

coefficient, CL and thrust, T. In discrete time, if the state and the control inputs at a given 

time-step are known, the state equation yields the state at the next time-step. 

 

The output vector contains those parameters that are readily measurable by the controller. 

The aircraft (and, consequently, the aircraft’s controller) may not know its true airspeed 

or its flight path angle, but it is able to measure its indicated airspeed, VIAS, Mach number, 

M, altitude, h, and altitude rate, h� , and these parameters make up the output vector. 

 

Equations (2.61) and (2.66) are the focus of the longitudinal dynamics. These two 

equations characterize the Phugoid mode of the aircraft. To get the appropriate altitude 

information, we include the vertical component of the vector equation (2.73) to our 

system of equations, as shown in equation (3.168). Altitude rate, �h , and altitude, h, are 

both needed for the feedback control of the longitudinal dynamics. The equations for the 

longitudinal dynamics are repeated here. 

 

� sin
V

T D mg

m
a

a=
− − γ

    (2.61) 
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�
cos cos

γ
φ γ

a
a

a

L mg

mV
=

−
    (2.66) 

 
� sinh Va a= γ       (3.168) 

 

Within these equations are the terms L  and D , which are functions of the state variables.  

However, the terms L  and D  are not explicitly defined in terms of the state variables.  To 

do this we need to know the aerodynamic characteristics.   

 

Using the airframe equations of section 2.9, we can express lift and drag and their related 

coefficients. As discussed in Section 2.6, we know that the lift coefficient will be treated 

as a control input to the system, and will not be a function of the states. 

 

L V S Ca w L= 1
2

2ρ      (3.169)  

 

The aircraft drag can be similarly expressed. 

 

D V S Ca w D= 1
2

2ρ      (3.170) 

 

where the drag coefficient, CD , of equation (2.131) is restated here. 

 

( )
2

o min dragD D L L
C C K C C= + −     (2.131) 

 

We need to express the total drag in terms of the drag coefficient. 

 

( )
2

21
2 o min draga w D L L

D V S C K C Cρ  = + −  
   (3.171) 

 

These relations for lift and drag need to be substituted into the state equations.  Equations 

(2.61) and (3.171) are combined to get the explicit state equation for true airspeed. 

 

 
( )

2
21

2
sin

o min draga w D L L a

a

T V S C K C C mg

V
m

ρ γ − + − −
  =�  (3.172) 

 

Equations (2.66) and (3.169) are combined to get the explicit flight path angle equation. 

 

�
cos cos

γ
ρ φ γ

a
a w L a

a

V S C mg

mV
=

−1
2

2

    (3.173) 
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We can represent Equations (3.172), (3.173), and (3.168) simply as functions of the state 

and control variables. This is our non-linear system. 

 

( , , , , )
aa V a a LV f V h C Tγ=�  

( , , , , )
aa a a L

f V h C Tγγ γ=�  

( , , , , )
h a a L

h f V h C Tγ=�  

 

We wish to express the longitudinal dynamics as an LTD state-space, as in equation 

(3.167). This will facilitate an analysis of the modal properties. It will also facilitate the 

computation of feedback gains in Section 4. 

 

To create a linear system from a non-linear system, we perform a Taylor series expansion 

about a reference condition (identified with subscript ‘0’) and, assuming perturbations 

from the reference condition are small, keep only first-order terms.  
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Similarly, the parameters of the output vector are repeated here. 

 

 

( )1

( 1)
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1 1 1 1

1 2
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γ γ
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 (2.119) 

 
*

a
V

M
a

=  (2.121) 

 h = h 

 
� sinh Va a= γ  (3.168) 
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Once again, we can represent these equations as functions of the state and control 

variables.  

 

 ( , , , , )
IASIAS V a a L

V g V h C Tγ=  

 ( , , , , )
M a a L

M g V h C Tγ=  

 ( , , , , )
h a a L

h g V h C Tγ=  

 ( , , , , ) ( , , , , )a a L a a Lh h
h g V h C T f V h C Tγ γ= =� �
�  

 

The linearized perturbation equations of the output vector are, 
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∂ ∂ ∂ ∂ ∂
γ

∂ ∂γ ∂ ∂ ∂
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� � � � �� �  

 

A partial derivative of a system equation is called a stability derivative if it is with respect 

to a state variable and a control derivative if it is with respect to a control variable.  The 

stability and control derivatives for the longitudinal model are organized in tabular form 

and presented in Table 3.6, Table 3.7, and Table 3.8. It is important to note that these 

derivatives are derived specifically for the 4 DOF model that we have constructed. These 

derivatives are similar, but not interchangeable with the classic stability and control 

derivatives of the full 6 DOF equations of motion such as those found in Nelson (1989) 

or Stevens and Lewis (1992). 

 

By inspection, we see that the partial derivatives of 
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 (3.175) 

 

 1h
g

h

∂

∂
=   

 

The LTD state-space representation of the linearized longitudinal dynamics (per 

equation (3.167)) is shown in equations (3.176) and (3.177).   
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All of the derivatives in these constant matrices are evaluated at the reference condition; 

the notation indicating that explicitly has been removed. Numerous derivatives are zero 

for all cases.  These derivatives are: 
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Table 3.6.  Stability and control derivatives of fVa
 

State/Input Derivative of fVa
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Table 3.7. Stability and control derivatives of f
aγ  

State/Input Derivative of f
aγ  
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Table 3.8. Stability and control derivatives of f
h
 

State/Input Derivative of f
h
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∂
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V
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a
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f
Vh
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h
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h L
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T  0
h
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Furthermore, if we assume that the aircraft’s reference condition is level flight (γ a = 0 ), 

we can set other derivatives to zero. 
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Modifying our state equations results in Equations (3.193) and (3.194).  These equations 

represent the final form of the linearized model.  
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It is useful to compare the simulation results of the linear model to the results from the 

nonlinear model.  The expected result is that the linear model will agree with the 

nonlinear model for very small perturbations from the reference condition.  As the 
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perturbations from the equilibrium condition become larger, the linear model will not 

follow the nonlinear dynamics.  This behavior is seen in Figure 3.24 and Figure 3.25.  

Both figures show the time histories of the three longitudinal states along with the 

altitude rate as calculated by the linear and nonlinear models. Figure 3.24 shows the 

models’ response to a small perturbation or change in the nominal or reference lift 

coefficient.  As can be seen from the time histories of Figure 3.24, the match between the 

two models is good.  However, as the perturbation or change in the nominal or reference 

lift coefficient becomes larger, the linear model fails to reflect accurately the behavior of 

the nonlinear dynamics.   

 

This is the limitation of using linear models. To account for this limitation, many linear 

models, all referenced about different reference conditions, are used to accurately model 

the aircraft’s performance throughout the entire flight envelope. 

 

 

Figure 3.24. Comparison of linear and nonlinear models with a 0.01 perturbation from the reference lift 

coefficient 
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Figure 3.25. Comparison of linear and nonlinear models with a 0.2 perturbation from the reference lift 

coefficient 

3.2 The Analysis of Longitudinal Aircraft Modal Properties 

3.2.1 The Characteristic Polynomial of an LTD System 

To solve the system of equations (3.167), we use a Laplace transformation, remembering 

that the matrices are constant. There is no loss in generality in assuming the initial 

conditions are zero. 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0s s t s s s s

s s s

− =x x x = Ax + Bu

y = Cx + Du
 (3.195) 

 

The state and output vectors can be expressed in terms of the control vector. 

 

 
( ) ( ) ( )

( ) ( ) ( )

1

1

s s s

s s s

−

− 
 

x = I - A Bu

y = C I - A B + D u
 (3.196) 

 

Equations (3.196) express the open loop dynamics in terms of a known control input. The 

polynomial given by ( )det sI - A  is known as the characteristic polynomial of the LTD 
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system. It is of the same order as the state vector. Analysis of the characteristic 

polynomial reveals the modal properties of the system. 

3.2.2 Modal Properties of the Longitudinal Dynamics 

The main limitation of linear models is that they are valid only for a limited range around 

the reference conditions that were used to create them. To model an entire flight envelope 

of an aircraft, many linear models, each having its own set of reference conditions, must 

be developed. Immediately, one can then see the advantage to having a linear model that 

is a function of as few reference values as possible.  For instance, if the aircraft’s linear 

model varied only with true airspeed, it would make for a simple one dimensional set of 

linear models, each with a different true airspeed reference. However, we can see through 

observation that the linear model of the longitudinal dynamics for a given aircraft is 

fundamentally a function of three varying parameters. These are: 

 

• Va :   The aircraft’s true airspeed 

• ρ :    The air density  

• m :    The mass of the aircraft 

 

The fact that there are three terms immediately presents an inconvenience. Any set of 

linear models must be three-dimensional. For instance, even a modest number of 

variations, say 10 true airspeeds, 10 masses, and 10 different air densities, would yield 

1000 reference conditions and hence 1000 linear models. It is, therefore, very desirable to 

eliminate a varying parameter if possible. Elimination of a varying parameter is the 

attempt of this section.    

 

Consider the state space representation of the system as shown in Equation (3.193). This 

system of equations contains three state equations, the first two of which characterize the 

Phugoid longitudinal mode (the ∆Va and ∆γ a  equations).  The third state equation, the 

∆h equation, contributes only to the calculation of altitude and does not affect the 

Phugoid mode. 
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Because the ∆h equation does not contribute to the Phugoid dynamics, we choose to 

ignore it in the following analysis. Ignoring the ∆h equation reduces the state equations 

to Equation (3.197).  
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The characteristic polynomial can be written immediately by inspection. 
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When we substitute for the actual derivatives we see that the characteristic polynomial 

expands to the following. 
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 (3.199) 

 

We know from classical control theory that the natural frequency and damping ratio are 

represented in the characteristic polynomial as s sn n

2 22+ +ζω ω .  Therefore, we can 

assign the last term to equal the square of the Phugoid frequency, ω p . 
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We can gain insight from this equation.  First, if the flight path angle is small, the relation 

can be reduced to Equation (3.201).  
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The ratio g
Va

2

2  is likely to dominate this term at low speeds and be small at high speeds.  

It is a function of true airspeed squared, which is proportional to dynamic pressure.  

Consider the other term.  It is inversely proportional to the mass.  This suggests that as 

the mass goes down, the frequency goes up.  This is true providing that the lift coefficient 

does not change.  However, it is likely that the lift coefficient will change with mass 

because the pilot will always tend to trim the aircraft for a given flight condition. If we 

assume that lift equals weight or is close to equaling weight for the vast number of flight 

conditions we can write the relation for mass as seen in Equation (3.202).  

 

ref L
qS C mg=       (3.202) 

 

Using (3.202) we can substitute for CL  in Equation (3.201) resulting the Phugoid 

expression in Equation (3.203). 
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Canceling terms leaves (3.204). 
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Finally, noting that the dynamic pressure is a function of density and true airspeed, 
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we can see that the Phugoid frequency for the trimmed aircraft  is entirely a function of 

true airspeed as shown in Equation (3.206). 
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This is an interesting result because it suggests that the frequency of the Phugoid is not a 

function of the weight of the aircraft or the altitude at which the aircraft is flying.  
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Moving to the damping ratio of the Phugoid mode, we can express the damping ratio 

using the middle term of the characteristic polynomial if we divide by 2ω p  as shown in 

Equation (3.207). 
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   (3.207) 

 

Unfortunately, there is no simplification that reduces the damping ratio to a single 

function of any parameter that we have so far defined. This expression for damping 

implies that the only way to schedule gains to control the Phugoid is to have three-

dimensional tables consisting of aircraft weight, true airspeed and altitude (air density).  

This creates a large computational burden and requires the storage of many scheduled 

feedback gains. It is desirable to somehow reduce the schedule to a two-dimensional 

table. One solution is to substitute dynamic pressure for the density and true airspeed. 

This substitution effectively assumes that changes in speed and altitude (density) can be 

interchangeable.  However, we can see that density and speed work independently of 

each other.  While it may be acceptable to schedule vs. dynamic pressure, it is only an 

approximation.  It is better if another quantity can be found. 

   

Working towards a simplified expression for damping, we revisit Equation (3.207). 

Assuming a trimmed aircraft, we can substitute Equation (3.202) into Equation (3.208) 

for weight, mg . After some algebraic manipulation, the final result is shown in Equation 

(3.209). 
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ζ p L
D

=
1

2a f       (3.209) 

 

We see that the damping is a function of the lift to drag ratio of the aircraft. An 

alternative derivation is contained in Nelson (1989), which comes to the same basic 

conclusion.  Unfortunately, it is impossible for the control logic or any sophisticated 

instrument to actually measure the lift to drag ratio of the aircraft. However, the lift to 

drag ratio is always a function of the lift coefficient at a given time. So, while the lift to 

drag ratio can not be known, we can approximately measure the trim lift coefficient at 

any given time in the flight and know that the lift coefficient corresponds to a particular 

location on the drag polar and hence a particular L/D. Therefore, the conclusion is that 

the modal properties for the aircraft are uniquely described by the trim lift coefficient and 

the true airspeed. However this does not consider the control derivatives.  

 

There are three control derivatives to be considered as shown in Equations (3.210) - 

(3.212). 
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Consider the expression for the lift coefficient in Equation (3.213). If the lift coefficient 

and the true airspeed are known, it is possible to solve for the ratio between the air 

density and the aircraft’s mass. This can be seen in Equation (3.214). 
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While it is not possible to solve for the mass and density directly, we can solve for the 

ratio, which is then all that is needed to define two of the control derivatives as shown in 

Equations (3.215) and (3.216).  
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The final control derivative, the 
∂

∂
f

T
Va  derivative, is obviously a function of mass only.  

Therefore, it is not completely possible to define the whole system using two parameters. 

However, having only one term that is a function of mass is far more convenient than 

having the mass term throughout the model. All gain calculations can be done using a 

nominal mass and varying true airspeed and trim lift coefficient.  To accommodate 

different aircraft masses only one term need be changed.  

 

3.3 Transfer Function Analysis of the Longitudinal Dynamics 

In Section 3.2 we investigated the modal property variation of the longitudinal dynamics. 

The modal property analysis, by defining the damping and frequency of the mode, 

defined the characteristic polynomial of the system. The purpose of this section is to 

outline the transfer functions that are most likely to dominate the longitudinal dynamics. 

 

A transfer function is an isolation of the affects of an input (or driving) function on an 

output (or response) function. Because the transfer functions include the zeros of the 

system as well as the poles (the roots of the characteristic polynomial), the transfer 

functions provide a more thorough understanding of the dynamic system. The limitation 

of a transfer function analysis (in addition to the analysis limitations already imposed by 

linearizing the system) is that it focuses attention on the isolated effects of a single input 

on a single output. For this reason, we use transfer function analysis only to reveal trends 

in linear feedback control. 

 

The output equation of the system (3.196) can be expressed in transfer function form. 

 

 ( ) ( ) ( )s s sy = G u  (3.217) 

 

where 

 

 ( ) ( )
1

s s
− 

 
G = C I - A B + D  (3.218) 

 

We can plug in the system matrices to obtain the transfer function matrix for our system. 

First we modify the output equation, equation (3.194). Notice the addition of a factor of 
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60 in the ∂
∂γ

fh

a
 term; this factor is to convert the altitude rate from ft/sec to ft/min so that 

the output matches the vertical speed indicator in a cockpit. 
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Our transfer function matrix is obtained by plugging the system matrices of equations 

(3.193) and (3.219) into equation (3.218).  

 

 

( )

2 2

2 2

2

1

a a a a

a a a a

a a a a aa a a

V V VIAS IAS IAS

a L a a L a

V V V

a L a a L a

V VV V h h

a a L a a L aa a a

f f f fV V V
s s s

V C V C V T

f f f fM M M
s s s

V C V C V T
s

f f f f ff f f f f f
ss s s

V C V C VV V

γ

γ

γ γ γγ

∂ ∂ ∂ ∂∂ ∂ ∂

∂ ∂ ∂ ∂γ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂ ∂

∂ ∂ ∂ ∂γ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

∂ ∂γ ∂ ∂γ ∂ ∂ ∂∂ ∂γ ∂

+

+

=
  

+ −− −   
  

G

60 60

a

a a a a a a

Vh

a

V V Vh h

a a L a L a a

f

T

f f f f f ff f
s s s

V C V C V T

γ γ γ

∂

∂γ ∂

∂ ∂ ∂ ∂ ∂ ∂∂ ∂

∂γ ∂ ∂ ∂ ∂ ∂γ ∂ ∂

 
 
 
 
 
 
 
 
 
 

   
− + − −    
     

(3.220) 

 

The characteristic polynomial discussed in the previous section is also the denominator of 

our transfer functions.  This is true for any state space system. Since the characteristic 

polynomial has already been investigated, there is no need to repeat the analysis here.  

The analysis here will focus on the numerators of the transfer functions. 

 

Several transfer functions were selected for study to determine the acceptability of using 

the two control inputs (thrust and lift coefficient) for various tasks. The transfer functions 

that were singled out for study and discussed here are the �h CL
 (g41), M

CL
 (g21), and �h T  (g42) 

transfer functions.  

 

3.3.1 The �h CL
 Transfer Function 

The �h CL
 transfer function relates an aircraft’s response in altitude rate to changes in the 

lift coefficient. The term of equation (3.220) corresponding to the �h CL
 transfer function is 

expressed below. 
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We can arrange the numerator of the transfer function to show clearly the zeros. We can 

see that we have one zero, which is highlighted in Equation (3.223). We represent the 

zero with the symbol z1. 
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We can not gain much insight from the symbolic representations of the derivatives alone, 

so it is necessary substitute in for the derivatives from the tables in Section 3.1. 

Expanding the inner terms of the zero we have:  
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Simplifying, 
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Basically, what the zero shows us is that if the parasite drag (zero lift drag) is smaller 

than the induced drag, the zero of this transfer function will be positive.  The cross over 
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point is when the aircraft is operating at its maximum lift to drag ratio. Figure 3.26 

illustrates the flight regime where the zero of the �h CL
 switches sign. 

 

The condition when a zero of a transfer function is positive is referred to as a non-

minimum phase system because of such a system’s tendency to immediately move in the 

opposite direction of the final steady state value. The �h CL
 is even more insidious because 

it has a negative DC gain. DC gain (the name is taken from electric circuits) is the value 

of the transfer function at s = 0. It reveals the gain of the steady-state response to the 

input. A negative DC gain insures that the final output will be negative of what was 

commanded.  A simple discussion suffices to provide an intuitive understanding of what 

is happening. 

 

Consider what happens when an aircraft is flying so slow that the drag is higher than it 

would be if it were to fly faster (see Figure 3.26). To fly slower the aircraft actually needs 

more thrust. However, the addition of thrust tends to accelerate the aircraft and hence 

lower the drag, which makes the aircraft fly faster. Likewise, if an aircraft in this 

condition tries to climb, the result of increasing the lift coefficient will tend to slow the 

aircraft. However, instead of slowing down and reducing drag, which would normally 

allow a climb, the aircraft sees an increase in drag. A pilot must be careful to add throttle 

and change lift coefficient simultaneously to control flight in this regime. 

 

Back Side of 

Thrust Curve

Induced drag

Parasite drag

Total drag

(Positive zero)
Point of zero crossover

(Negative zero)

 

Figure 3.26. An illustration of drag vs airspeed at constant altitude, highlighting the non-minimum phase 

behavior of the transfer function of the linearized system. 
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Our transfer function analysis of the linearized system implies that lift coefficient control 

of altitude rate is stable on the front side of the thrust curve, and unstable on the backside. 

Based on this analysis, one might assume that control is difficult or impossible on the 

backside of the thrust curve. Fortunately, the linearized system and transfer function 

analysis fail to accurately predict the stability of our system dynamics on the backside of 

the thrust curve. In general, the system is not operating with constant thrust while using 

lift coefficient to control altitude rate. An increase in thrust is typically available to 

correct the non-minimum phase behavior. And, while it is not a typical maneuver to 

descend at idle thrust while maintaining a commanded altitude rate, such a maneuver is 

still possible, partly because idle thrust increases in a descent and partly because the 

speed is allowed to vary in such a maneuver. And lift coefficient control of altitude rate is 

a viable control strategy throughout the flight envelope. 

 

3.3.2 The  M
CL

 Transfer function 

The M
CL

 transfer function characterizes the response in Mach number with changes in lift 

coefficient. The term of equation (3.220) corresponding to the M
CL

 transfer function is 

shown below. 
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Next, the zero of the transfer function can be analyzed as shown in Equations (3.227) and 

(3.228). 
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We can see from Equation (3.228) that the zero is always negative.  This is a favorable 

result because it means that Mach number can always be controlled effectively by the lift 

coefficient. However, the control design will not necessarily be trivial.  Consider the 

following example of a transfer function. 
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a f
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The root locus of this transfer function shows us that feedback control of  Mach number 

using the lift coefficient would be difficult.  Proportional feedback tends to drive the 

poles unstable as seen in Figure 3.27.  When the poles do converge on the real axis, one 

pole heads towards positive infinity and the other heads towards the zero. We can see 

from Figure 3.27 that it will be necessary to feedback something in addition to Mach for 

stability.  
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Figure 3.27. The root locus of proportional control applied to the M
CL

 transfer function 

 

 

3.3.3 The �h T  Transfer function 

Consider the throttle to altitude rate transfer function. The term of equation (3.220) 

corresponding to the �h T  transfer function is shown below. 
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This transfer function has no zeros, which makes it very well behaved. Using throttle to 

control altitude rate should not present a design challenge and is not affected by the back 

side of the thrust curve.  Applying throttle while the lift coefficient is held constant will 

always make the aircraft climb regardless of the flight condition.  
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4. The	Feedback	Control	System	for	Longitudinal	Control		
In the previous Chapters, the bulk of the analysis effort was spent on the derivation of the 

physical model of the aircraft. The physical model of the aircraft consisted of the 

dynamic equations, which model the aircraft’s performance, and the kinematic equations, 

which characterize the aircraft’s propagation over the surface of the Earth. The purpose 

of building such an intricate model is to insure the fidelity of modeling actual aircraft in 

flight. The main advantage of a high fidelity aircraft model is that it accurately models 

the performance and handling characteristics of an aircraft. Accordingly, the 

disadvantage of a high fidelity aircraft model is that it accurately models the performance 

and handling characteristics of the aircraft. To make the aircraft model follow a desired 

trajectory, the aircraft model must be ‘flown’ by a pilot in the same sense that the actual 

aircraft must be flown. Arguably, the longitudinal control system is the most complicated 

and sensitive part of the entire simulation. This Chapter is the first of three Chapters that 

cover the longitudinal control system. 

 

The purpose of the longitudinal control system is to provide a means of automating two 

fundamental aircraft maneuvers.  These maneuvers are:  

 

• Altitude change and altitude capture 

• Speed change and speed capture 

 

Generally, the functionality of the longitudinal control system can be divided into two 

distinct classes of algorithms: feedback control and supporting functional logic. This 

Chapter deals with the design of the feedback control algorithms to stabilize the aircraft 

and drive it to the desired state. There are different feedback control algorithms for 

different flight phases, and each of these is discussed along with a strategy for calculating 

the required gains. 

4.1 The General Control Law 

Our general control law for the longitudinal dynamics is the same regardless of where in 

the flight envelope the aircraft is operating. The only real difference in controlling flight 

within different regions of the flight envelope is the gains that are used. The general 

control law framework allows for any output variable to be fed back to any input 

variable.  

 

The general framework for a proportional-integral (PI) control law is shown in block 

diagram form in Figure 4.1. The terms in the block diagram are defined as follows: 

 

• yd is the desired output vector 

• y is the actual output vector 
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• e is the error vector equivalent to yd - y 

• Kp is the proportional gain matrix in the feed-forward path. 

• Ki is the integral gain matrix (also in the feed-forward path) 

• Kb is the proportional gain matrix in the feedback path 

• x = Ax + Bu�  is the linearized state equation for the longitudinal dynamics 

• y = Cx + Du  is the linearized output equation for the longitudinal dynamics 

 

From experience in dealing with the longitudinal dynamics, we have seen that 

proportional control using the appropriate output error, e, is sufficient to achieve the 

dynamic response desired. Integral control is then added to eliminate steady-state error. 

The final feedback loop, the one using Kb, is designed to allow proportional feedback 

control of certain output variables without affecting the zeros of the transfer functions. 

Gains in the feedback path affect only the modal properties of a system; gains in the feed-

forward path affect the dynamics of the system while at the same time driving the state 

error to zero. In certain instances, it is necessary to make use of the stabilization offered 

by feeding back a particular output while not driving that output to any particular value. 

 

 
 

Figure 4.1. Block diagram for the longitudinal control law 

 

The reader is reminded that the linearized system is simply a convenient approximation 

to the actual, non-linear system that is used for simulation. The convenience of the linear 

approximation is in analyzing the effects of our controller on the modal properties of the 

system to help us choose the controller. Once the controller is designed, we need to verify 

that it produces stable and realistic behavior in the actual, non-linear simulation model. 

 

The general form of a LTD state-space is restated here. 

 

 
( ) ( ) ( )

( ) ( ) ( )

t t t

t t t

x = Ax + Bu

y = Cx + Du

�
 (4.1) 

 

Our general control law is defined in the time-domain as, 
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 ( ) ( ) ( ) ( )t t t t∫
t

p i b
0

u = K e + K e dt - K y  (4.2) 

 

Because the general control law allows for any output variable to be fed back to any input 

variable, each gain matrix is of dimension (n x l), and is of the form, 
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where, n is the number of control variables, l is the number of output variables, and the 

subscript, p, refers to the proportional gain matrix. The form the integral and feedback 

gain matrices is the same except that subscripts i and b are substituted for the subscript p. 

4.2 Manipulating an LTD State-Space with Integral Control 

Integral control adds system poles to our state-space. In effect, it changes the order of our 

LTD system. This can be seen explicitly if we modify our LTD system to include the 

differential equations added by our PI controller. Let’s define proportional and integral 

control vectors as, 
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u = K e - K y

u = K e
 (4.4) 

 

and let’s define the integrated control as, 

 

 ( ) ( )
0

t

t t dt= ∫u iI u  

 

Then the control vector, equation (4.2), can be written in terms of its separated 

proportional and integral terms. 

 

 ( ) ( ) ( )t t t= +p uu u I  

 

Clearly, the derivative of the integrated control vector, Iu, is the integral control vector, 

ui. 

 

 ( ) ( )t t=u iI u�  (4.5) 
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The state equation can be rewritten in terms of the separated control vector. 

 

 ( ) ( ) ( ) ( )t t t t + p u
x = Ax + B u I�  

 

 ( ) ( ) ( ) ( )t t t t+p ux = Ax + Bu BI�  (4.6) 

 

Combining equations (4.5) and (4.6) and the output equation into one LTD system gives, 
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From equation (4.4), the control law can be written as, 
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• m is the number of state variables in the state vector (3 in our current example), 

• n is the number of control variables in the control vector (2), 

• l is the number of output variables in the output vector (4),  

• 0n is a square, n x n matrix of zeros, and 

• 0n,m is a n x m matrix of zeros. 

 

Equations (4.7) and (4.8) represent our new LTD system with a linear, PI controller. For 

the purposes of analyzing the modal properties of our system, consider that the state, 

control, and output vectors are simply perturbations from a reference condition. Without 

affecting the system’s characteristic polynomial, it can be assumed that our desired result 

is to return to that reference condition. Then the output vector, yd, is a vector of zeros and 

the error vector, e, becomes the negative of the output vector, y. 

 

 ( )lde = y - y = 0 - y = -y  

 

Then the control law, defined by equation (4.4), can be written as, 
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Since, in this linear approximation, there is no way to differentiate between the effects of 

proportional gain in the feedback path, Kb, and proportional gain in the feed-forward 

path, Kp, there is no use in considering both and so Kb is neglected. 
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( )
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p p

i i

u K
= y

u K
 (4.9) 

 

Equations (4.7) still follow the format of an LTD system:  the new A-matrix is square, the 

new state and control are still time-dependent row vectors, and the new A-, B-, C-, and 

D-matrices are constant. Once combined with the standard output-based feedback control 

law of equation (4.9), we have a complete LTD feedback control system conducive to 

modal analysis. It is a convenient form that adds the integral terms (and their resultant 

poles) to the state vector to facilitate the analysis of modal properties and calculation of 

gains.  

4.3 An Analysis of the Effects of Feedback Control on the Modal 

Properties 

Until this point, the analysis of this chapter is generalized to any LTD system with a PI 

controller defined by equation (4.2), but we now begin to tailor the analysis to our model. 

When we combine our LTD system of equations (4.7) with our original state, control, and 

output vectors and our A-, B-, C- and D-matrices as defined in Chapter 3, we get, 
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And the general form of our LTD system is, 
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Following the form of the general gain matrix of equation (4.3), our proportional, 

integral, and feedback gain matrices are, 
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           (4.13) 

 

Substituting into equation (4.9), we have our control law. 

                                                 
*
 Note that the �h  equation has added a factor of 60 to its  ∂

∂γ
fh

a
 term.  This is to convert 

the output from ft
sec  to ft

min  as would be read on a real vertical speed indicator. 
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There are 16 gains in our gain matrix, each representing the effect of feedback of a 

particular output parameter to a particular control parameter. To gain insight into the 

effect each feedback gain is likely to have, we examine the root locus of each gain. 

Consider a Boeing 767-300 at a reference weight of 198,000 lbs in steady, level flight at 

300 knots indicated airspeed (KIAS) and 30,000 feet. For this example, the LTD system 

of equations (4.10) becomes, 

 

0.0889 32.2 0 21.7 0.000163 21.7 0.000163 0 0

0.000366 0 0 0.173 0 0.173 0 0 0

0 787 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

CL

T

LL

aa
p

aa
p

i

CC

TT

VV u

u
hh

u
II

II

γγ

∆ ∆  − − − −   
      ∆∆      
   ∆   ∆ = +
      
      
           

�

�

�

�

�

0.593 0 0 0 0

0.00100 0 0 0 0

0 0 1 0 0

0 47200 0 0 0

CL

T

L

i

a

IAS

a

C

T

u

V
V

M
h

h
I

h
I

γ

 
 
 
 
 
 
 

∆ 
∆     ∆     ∆     ∆=
   ∆  
     ∆     

 

�

 

Figure 4.2 - Figure 4.5 show how the phugoid mode poles are moved by various types of 

feedback. Figure 4.2 illustrates the system’s behavior with different proportional 

feedback to the lift coefficient. The first subplot shows the positive feedback of indicated 

airspeed to the lift coefficient, which we see is unstable. A moment’s reflection on the 

nature of the system provides intuitive verification.  An increase in the lift coefficient 

results in higher drag, which serves to slow the aircraft. This implies that lowering the lift 

coefficient would serve to increase speed. The second subplot verifies this and shows 

negative speed feedback to the lift coefficient provides for a stable control. 

 

The third subplot shows the effect of altitude feedback to lift coefficient, which we see 

tends to shoot the phugoid poles up along the imaginary axis. This will increase the 

phugoid natural frequency while reducing the damping of the system.  
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The fourth subplot shows the effect of altitude rate feedback to lift coefficient. Here we 

see a well behaved loop. Feeding back the altitude rate tends to dampen the system. This 

effect can be intuitively verified by remembering that rate terms usually do increase the 

damping of a system.  

 

Figure 4.3 shows the effects of integral feedback to the lift coefficient. The second 

subplot shows a problem with instabilities of integral speed feedback to the lift 

coefficient. If we choose to use negative integral speed feedback to the lift coefficient, we 

will need to feed some output in the feedback path to keep it stable. The fourth subplot 

shows that we need to be careful with low damping of integral altitude rate feedback to 

the lift coefficient. 

 

Figure 4.4 shows the effect of proportional feedback to the thrust. The first subplot shows 

positive feedback of indicated airspeed to the thrust. The locus is well behaved and tends 

to increase the damping of the system. Positive feedback of indicated airspeed or Mach to 

the thrust is a good choice for the control of speed. The fourth subplot shows altitude rate 

feedback to the thrust.  The altitude rate here tends to have the same effect on the 

Phugoid poles that altitude feedback had to the lift coefficient. Altitude rate feedback to 

the thrust is not a good choice for controlling altitude rate or altitude. Similarly, the third 

subplot shows that altitude feedback to the thrust drives the system unstable 

 

 

Figure 4.2. Effects of proportional feedback to the lift coefficient 
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Figure 4.3. Effects of integral feedback to the lift coefficient 

 

Figure 4.4  Effects of Proportional Feedback to the Thrust 
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Figure 4.5  Effects of Integral Feedback to the Thrust 

Figure 4.5 shows the effects of integral feedback to the thrust. The third and fourth 

subplots confirm that it is not wise to control altitude or altitude rate with thrust because 

the system becomes unstable as soon as we apply control. The first subplot shows that 

integral feedback of speed to the thrust tends to shoot the phugoid poles up the imaginary 

axis, increasing the natural frequency and lowering the damping of the response. This 

implies that we need to be mindful of low damping when controlling speed with the 

thrust. 

4.4 Feedback Controller Design 

In the previous section, we analyzed the effects of feedback control on the modal 

properties of the LTD system in order to gain insight into how feedback control would 

affect our nonlinear, four-degree-of-freedom model. In this section, we continue to use 

the LTD system to design feedback controllers for several different regions of an 

aircraft’s flight regime. The LTD system provides a suitable approximation to the 

nonlinear system so that feedback controllers designed using the LTD system will 

produce similar results in our nonlinear model. Each controller is customized to attain the 

desired flight configuration using smooth transitions that are typical of commercial 

aircraft flight. 

 



 

 -89- 

Let us summarize our conclusions from the analysis of the root loci of the LTD system. 

The primary control input in an aircraft is the control stick (i.e., the lift coefficient), so it 

should be the primary control in our controller as well. Figure 4.2 and Figure 4.3 show 

that we can successfully control speed with the lift coefficient, as long as we use negative 

feedback, and as long as we feed output (e.g., altitude rate) in the feedback path to keep 

the controller stable. Figure 4.2 and Figure 4.3 also show that we can successfully control 

altitude rate with the lift coefficient. Figure 4.4 and Figure 4.5 show that we can 

successfully control speed with the throttle (i.e., thrust). Our basic strategy will be to … 

 

• use lift coefficient to control altitude rate during speed changes; 

• use lift coefficient to control speed during altitude changes, while feeding back 

altitude rate to keep the system stable; and 

• use thrust to control speed and lift coefficient to control altitude rate when we 

need to control both. 

 

Our control law allows us to feedback all outputs to both inputs; although only a fraction 

of the gains are used in a given feedback system. To design our controllers, we will use 

our full control law, as defined by equation (4.8) and expanded here using the gain matrix 

definitions of equations (4.11), (4.12), and (4.13). 

 

11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24

11 12 13 14

21 22 23 24

1

2

3

4

0 0 0 0

0 0 0 0

CL

T

CL

T

P IASp p p p b b b b

P p p p p b b b b

i i i i i

i i i ii

u Vk k k k e k k k k

Mu k k k k e k k k k

hu k k k k e

k k k k e hu

       
       
       = −       
       
          

�

  (4.15) 

 

The control inputs to the system split into their proportional and integrated parts. The 

control inputs 
CL

Pu  and 
TPu  are the proportional portions of the lift coefficient and thrust 

respectively, and 
CL
iu and 

Ti
u  are the integrated portions of lift coefficient and thrust. 

4.4.1 Lift Coefficient Control of Altitude Rate 

There are several flight regimes in which a pilot uses the control stick to capture or 

maintain altitude rate while allowing the speed to change. During level flight 

accelerations and decelerations, a pilot will preset the thrust (maximum thrust for 

acceleration, idle thrust for deceleration) and allow the speed to change accordingly while 

using the control stick to maintain level flight (i.e., a zero altitude rate). Alternatively, the 

pilot may wish to capture and maintain a desired, non-zero altitude rate and let the speed 

change as it may (i.e., during accelerations in climb or decelerations in descent). 

 



 

 -90- 

For these regions, we need a controller that uses lift coefficient to control altitude rate but 

does not modulate thrust. In the truest sense, the controller is not controlling speed; 

however, in actuality the speed is controlled because we preset the thrust according to the 

desired direction of the speed change. When the speed nears the desired steady, level 

flight condition, we switch to a controller that simultaneously controls speed and altitude 

rate. 

 

To accomplish the goals of this controller, we need simply to command an altitude rate 

for all time. For this reason we can simplify the output equation of the LTD system of 

equation (4.10) to, 
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In doing so, we can see that the dynamics of the system are governed exclusively by the 

L

h
C
�  transfer function as defined in Chapter 3. Consider a DC-9 traveling at 15000 ft and 

578 ft/sec and weighing 140,000lbs. The LTD system is shown below with its reduced 

control and output vectors. The phugoid eigenvalues for the open loop system are located 

at -0.0036  0.0786i± , which corresponds to a natural frequency of 0.0787 rad/sec and a 

damping ratio of 0.0445. A plot of the step response of the system to a 0.1 change in lift 

coefficient is shown in Figure 4.6. 
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Figure 4.6. System response to a 0.1 step in lift coefficient 

    

Figure 4.7.  Root Loci of 
14pk (left) and

14ik (right) successive loop closures 

 

It is desired to increase the frequency and damping of the system while having zero 

steady state error. We start with proportional altitude rate feedback to the lift coefficient, 

14pk , shown in the left side of Figure 4.7.  A value of 
14

5
2 6 10.pk

−= ×  moves the poles to 

location of -0.0578  0.0562i±  with a damping ratio of 0.7173 and a natural frequency of 

0.0806rad/sec. We add integral control to guarantee zero steady state error, not frequency 

changes; but we must be careful about the associated decrease in damping we noticed in 

our preliminary analysis. As seen on the right half of Figure 4.7, we move the poles with 

 

14

-5
9.0 10ik = ×  to a location of  -0.0565  0.6152i± . In doing so, we increase the 

frequency of the mode to 0.6178 rad/sec but we reduce the damping to 0.0914. To correct 
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for the low damping we can increase the gain 
14pk  once again and move the Phugoid 

poles to the left as shown in Figure 4.8. 

 

The final values chosen for 
14pk  and 

14ik  are -42.08 10×  and -59.0 10× . The final step 

response is shown in Figure 4.9. Notice that the system achieves the 1000 ft/min climb 

rate with zero steady state error. Furthermore, the time history for the lift coefficient is 

well within acceptable bounds. Note however that the lift coefficient initially is rather 

aggressive. In the next chapter, we define limits to the amount a control input can change 

in a time-step so that such aggressive control action is made more realistic. 

 

The method of successive loop closures is good for initial work and illustration of the 

system dynamics, but it is tedious if many gains must be chosen or specific dynamic 

properties are desired quickly. Furthermore, for the purpose of scheduling gains, the 

method of choosing gains must be automated. Automating gain scheduling is reasonably 

straightforward once a control scheme has been established. Since the control logic is 

simple, the method of pole placement can be completely analytic. This explicit method of 

pole placement is outlined in Brogan (1991). Its limitation is that it is cumbersome and 

useful only for low-order systems, however its simplicity gives added flexibility in gain 

selection.  

 

Figure 4.8. The effects of an increased proportional gain 
14pk   
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Figure 4.9. System response to a 1000 ft/min commanded rate of climb 

 

The process starts with replacing the individual terms in the system of equations with 

placeholders to simplify the final expressions. Furthermore, since we are not feeding back 

altitude and it does not contribute to the dynamics, we can remove it from the state 

equation. 
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We want to be able to control the eigenvalues of the closed loop A-matrix, which is 

defined as follows. 
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Simplifying, 
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we have the final closed loop A-matrix in Equation (4.17). 
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Next, we need to calculate the characteristic polynomial for the A-matrix.   
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Finally, we have an expression for the characteristic polynomial shown in (4.18). 

 

[ ] ( )( )
( )( )

( ) ( )( )

14 14

14

14

14 14 14

14 14 14

2

11 42 21 21 11 42

12 42 11 21

11 21 42

3 2 2

42 21 11 11 42 21 21 11 42

12 21 42 11 21 21 42 11 21 42

det
p i

p

i

p p i

p i i

s s a s c b k s a b c k

a c b k a s

s a b c k

s c b k s a s a c b k s a b c k

a a s c b k a s b c k s a b c k

= − + +

+ − +

+ −

= + − − +

− + + −

cl
I - A

   

 



 

 -95- 

[ ] ( )
( )

( )

14

14 14 14

14 14

3 2

42 21 11

42 11 21 21 42 11 42 21 12 21

21 11 42 11 21 42

det
p

p i p

i i

s s c b k a s

c b k a b c k a c b k a a s

a b c k a b c k

= + −

+ + − −

+ −

cl
I - A

 (4.18) 

 

From this we can determine what gains are necessary to achieve the desired characteristic 

polynomial.  We have the following form of the characteristic polynomial: 

  

   [ ] 3 2

1 2 3 4det s c s c s c s c= + + +clI - A  

 

Therefore, we can set each coefficient equal to its corresponding term in Equation (4.18).  
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Being able to define the coefficients in terms of the gains is helpful; however, we really 

want to determine the gains from the coefficients to be sure of getting the correct 

response.  This is a problem because we have three linearly independent equations and 

two unknown gains.  In order to solve this system, we will have to leave one of the modal 

properties of the third order system as an unknown. The characteristic polynomial in 

terms of modal properties is,  
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where ζ and ωn are the damping ratio and natural frequency of the oscillatory motion and 

p1 is the system poll. We can expand this form of the characteristic polynomial and set 

the coefficients equal to those in the previous form. 
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This system of equations is linear with constant coefficients and can be written in matrix 

form. 
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This matrix equation is easily solved for the gains. I damping ratio of 0.9 and a natural 

frequency of 2.0 are suggested. 

4.4.2 Lift Coefficient Control of Speed 

During climbs and descents, a pilot typically maintains a constant airspeed or Mach 

number during the altitude change. The pilot will preset the thrust (climb thrust for 

climbs, idle thrust for descents) and allow the altitude rate to vary accordingly while 

using the control stick to maintain speed. For these regions, we need a controller that uses 

lift coefficient to control speed but does not modulate thrust. Since the aircraft has two 

measurements for speed, Mach and indicated airspeed, both speeds have to be considered 

in separate analyses. However, since the solutions are identical with the exception of a 

few changes in feedback gains, only the Mach case is discussed. 

 

The goal of the feedback controller is to capture a given speed by adjusting the lift 

coefficient. This means that the system is mainly governed by the 
L

M
C  transfer function 

discussed in Section 3.3.2. However, feedback of speed to the lift coefficient has a 

problem with low damping as illustrated in Figure 4.2. The feedback control strategy to 

fix the low damping problem has already been touched upon in Section 3.3.2. Our basic 

strategy is to build a proportional -plus- integral controller for capturing Mach, and then 

feedback altitude rate in the feedback path to increase the damping of the system.  

 

We will need two of the four outputs to complete the design, so the output equation of the 

LTD system of equation (4.10) can be simplified to, 
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Consider the same DC-9 traveling at 15000 ft and 578 ft/sec and weighing 140,000lbs. 

The open loop dynamics for the system are the same as shown in equation (4.16), and our 

new output equation is 
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Initially, the phugoid eigenvalues are located at -0.0036  0.0786i± , which correspond to 

a natural frequency of  0.0787 rad/sec and a damping ratio of 0.0445 (which is very low 

damping). We start the loop closures by closing the feedback path 
14bk  as shown in Figure 

4.10.  Setting 
14

5
2 7 10.bk

−= × moves the poles to -0.0599  0.0540i± , which correspond to 

a natural frequency of 0.0806 rad/sec and a damping ratio of 0.7173 (a more suitable 

damping ratio).  Applying proportional Mach feedback to the lift coefficient, we increase 

the frequency of the poles to 0.20 rad/sec, which we initially think is a good value as 

shown in Figure 4.11. The resulting feedback gain is 
12

9 5.pk = − . Note the negative value 

of 
12pk . This makes intuitive sense because an increase in speed should be the result of a 

lower lift coefficient. It is also consistent with our conclusions from Figure 4.2. To test 

the partially built controller, we attempt a command to Mach 0.7. From the simulation 

shown in Figure 4.12, we find out that, while we like the response, the required control 

effort is excessive. The lift coefficient drops nearly to -1. Realizing that too much control 

effort is required, we drop the frequency down to 0.1 rad/sec, which corresponds to a gain 

of 
12

1 5.pk = − . With this reduction in gain, the poles sit at -0.0618  0.0904i±  with a 

frequency of 0.1095 rad/sec and a damping ratio of 0.5647.  
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Figure 4.10. 
14bk  root locus for the Mach Capture controller  

 

The next loop closure, the integral control, is tricky because the integral control tends to 

send the poles towards the right half plane. Integral control also pulls the integrator pole 

away from zero along the negative real axis. A gain of 
12

0 1.ik = −  is applied, which tends 

to line up the real part of the conjugate pair with the integrator pole as shown in Figure 

4.13. The poles move to -0.0412  0.0846i±  where the frequency is 0.0941 rad/sec and 

the damping is 0.4377. Since the damping is low, more altitude rate is applied. The 

altitude rate is applied until the locus starts to curve back inward and head towards the 

imaginary axis.  The gain is set to 
14

5
4 2 10.bk

−= ×  where the frequency of the system is 

0.0614 rad/sec and the damping is 0.7265. 

 

 

Figure 4.11. 
12pk root locus for the Mach Capture controller 
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We also note that the integrator pole is moved to -0.0971. The complete system is 

simulated as shown in Figure 4.14. From Figure 4.14 we see that the controller captures a 

Mach of 0.7 and that the lift coefficient is not unreasonable. However, the speed of the 

response is low. 

 

 

Figure 4.12. Simulated Mach Capture 

 

…  

Figure 4.13.  
12ik (left) and 

14bk  (right)  root loci for Mach capture 
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gains used are calculated automatically by the gain scheduling algorithm where we can 

choose exactly the modal properties that we want. 

 

 

Figure 4.14.  Simulation of the Completed Mach Capture 

 

We have seen from the control law design that successive loop closures can be difficult. 

In this example, one can see that just about any set of modal properties could be 

achieved; however, the trial and error approach is certain to take a considerable amount 

of time. It is still valuable to manually close the loops at least once because it helps to 

build our understanding of the system dynamics. For instance, we now know that high 

system frequencies require an excessive control force. For this system, it is best to 

schedule natural frequencies on the order of 0.1 rad/sec and no higher. For the purpose of 

scheduling the actual gains, the automated method is presented next.  

 

Taking the LTD system of equation (4.10), we remove indicated airspeed and altitude 

from the output equation and we remove altitude and integrated thrust from the state 

equation. 
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The basic control law as developed earlier is, 
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where  

 

( )2 de M M= −    

 

Note that for the purpose of determining eigenvalues, the gains 
14pk  and 

14bk  have 

identical effects.  Therefore we substitute 
14bk  into the matrix location reserved for 

14pk  

for the purposes of gain scheduling only. The gain matrix becomes, 
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The closed loop form of the equations (A-BKC) is, 
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The characteristic polynomial is calculated next. 
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Summing like terms yields the characteristic polynomial. 
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The coefficients of the terms are difficult to manage so some effort is applied to 

simplifying them. We wish to express the characteristic polynomial in the form, 
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Setting the two forms equal, we can solve for the coefficients. 
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Assuming that the gain 
14bk  is known, we can solve for the other gains. 
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Plugging these gains back into the C3 equation yields, 
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Simplifying, 
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and we can solve for the gain 
14bk . 
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Because we have three gains, we see that we were able to specify all the coefficients of 

the characteristic polynomial. This enables us to place the poles arbitrarily. We can 

choose the frequency and damping of the system poles and the location of the integrator 

pole. From our manual loop closing, we also have some idea of what values make good 

gains. We can specify the coefficients in terms of the desired modal properties and the 

location of the integrator pole, p, by expressing the characteristic polynomial in terms of 

its roots.  
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Error! Not a valid bookmark self-reference. summarizes the gain scheduling equations 

used for this controller. Looking at Figure 4.14, we see that the lift coefficient is still 

commanded rather violently. Therefore we decide to specify slower dynamics. Using 

equations in Error! Not a valid bookmark self-reference. we can try many different 

modal properties quickly. After some experimentation, we choose the following modal 

properties: 
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Table 4.9. The gain scheduling equations for lift coefficient control of speed 
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Figure 4.15.  Simulation of Mach capture with slower dynamics 
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• 0 05
n

radω = . / sec  

• 0 7ζ = .  

• p = -0.05 

 

The gains for this set of modal properties are 
12

0 1635.pk = , 
12

0 0342.ik = − , and 

14

4
0 2715 10.bk

−= × .  Figure 4.15 shows the simulation results. With the slower dynamics, 

the lift coefficient no longer has its initial sharp dip; however the system takes 40 seconds 

longer to capture the desired Mach number. This performance penalty is acceptable 

because an extra 40 seconds is not much time in the course of an entire flight.  

4.4.3 Controlling Speed and Altitude Rate Simultaneously 

Maintaining a specified speed and a specified altitude rate simultaneously (as in steady, 

level flight) requires feedback control of both the thrust and lift coefficient. Because of 

this, the controller for this flight regime is the most complicated of our controllers. It is 

also the most used controller, because the aircraft spends most of its time controlling both 

speed and altitude (as in steady, level flight). The design goals of this controller are also 

the most ambitious. Here, we desire to drive both the speed of the aircraft and altitude 

rate to some commanded values. 

 

Consider the same DC-9 traveling at 15000 ft and 578 ft/sec and weighing 140,000lbs. 

The open loop dynamics for system are the same as shown in equation (4.16);  however, 

because of the addition of the throttle feedback control, we need to use the full state 

equation of the LTD system in equation (4.10). With the given flight condition, the state 

equation becomes,  
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Since we want to be able to drive the aircraft to a particular speed and altitude rate 

independently of each other, we must be very careful how we arrange the feedback in the 

feed-forward path. Feedback to any one input cannot be used to drive two independent 

errors to zero simultaneously. By observing effects of feedback in Figure 4.2 and Figure 

4.3, we see that the throttle is much more adept at controlling speed than altitude rate. 

This is because the feedback of speed to the throttle tends to increase the damping of the 

longitudinal mode. Similarly, the lift coefficient is a much better control of altitude rate 

than speed. Therefore we only allow speed feedback to the throttle and altitude rate 

feedback to the lift coefficient. For purposes of this demonstration, we use Mach in the 

feedback. The control laws that use indicated airspeed are identical in form. 

 

Initially, the Phugoid eigenvalues are located at -0.0036  0.0786i± , which corresponds 

to a natural frequency of 0.0787rad/sec and a damping ratio of 0.0445. Initially, we close 

the lift coefficient feedback paths in a manner very similar to what was done in Section 

4.4.1. We close the proportional loop first using 
14pk . We increase the proportional gain 

to 
14

5
3 0 10.pk

−= ×  as shown in Figure 4.16. This results in longitudinal mode poles at  

-0.0662 ± 0.465i. Our modal properties are ωp = 0.081 rad and ζp = 0.819. Our damping 

ratio is acceptable; however, our frequency is low. We adjust the frequency when we add 

integral control. As shown in the second plot of Figure 4.16 , we increase the integral 

gain to 
14

5
3 7 10.ik

−= × . This moves the Phugoid poles to -0.0648±0.3954i where the 

modal properties are ωp = 0.4 rad and ζp = 0.1618. While this results in an acceptable 

frequency, the damping ratio is too low. Therefore, we increase the proportional gain to 

14

4
1 34 10.pk

−= ×  as shown in Figure 4.17.  This results in longitudinal mode poles of -

0.2818 ± 0.2850i with the corresponding modal properties of ωp = 0.4 rad and ζp = 

0.7031. The position of the integrator pole is -0.0027. 

 

   

Figure 4.16.  The initial 
14pk (left plot) and 

14ik (right plot) loop closures for region 7 
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Figure 4.17. The final increase in 
14pk  to achieve adequate damping 

 

 

Figure 4.18. Simulation of a commanded 1000ft/min rate of climb without any feedback to thrust 

 

At this point we can illustrate the system dynamics by commanding a 1000 ft/min climb. 

The simulation results (Figure 4.18) show response of altitude rate and Mach number as 

well as the lift coefficient and thrust inputs. We can see that we approximately achieve 

the 1000 ft/min climb rate; however, we have a small error of approximately 25 ft/min. 
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This error is due to the slow integrator pole. We ignore this small error for now. We also 

see that the Mach number tapers off during the climb. This is expected at the moment 

because there is no feedback to the throttle to maintain Mach (the thrust is constant). 

 

   

Figure 4.19.  Root loci  for 
22pk  (left plot) and 

22ik (right plot)  

We also see that the controller slowly increases the lift coefficient to maintain the rate of 

climb as the aircraft slows down. If the controller is left to continue, it will stall the 

aircraft. Adding feedback to thrust corrects the problem. Feedback to thrust is initiated 

using proportional control. We increase the gain 
22pk  to 61.56 10×  as shown on the left 

side of Figure 4.19. The longitudinal mode is virtually unaffected by the proportional 

feedback to throttle. The biggest influence of the proportional feedback to the thrust is to 

move the integrator pole for the lift coefficient feedback farther negative. The lift 

coefficient’s integrator pole is moved to -0.3222. This is actually desirable because it 

reduces the steady state error in altitude rate. The final loop closure, integrated thrust is 

closed next. As shown on the right hand side of Figure 4.19, the integrated feedback 
22ik

to thrust has virtually no effect on the longitudinal dynamics; rather, it tends to draw the 

two integrator poles together. If the gain is increased further, the integrator poles are 

drawn together and become complex conjugates. This in turn creates another longitudinal 

oscillation, which is slower than the dominant mode. This extra mode is undesirable, so 

we stop the integrated feedback at 
22

5
1 1 10.ik = × . The final system is described as: 

 

• complex conjugate poles: -0.2927   0.2836i±  

• Thrust integrator pole : -0.1020 

• Lift coefficient integrator pole: -0.2179 

• Modal properties:  0.7182ζ =  0 407rad
n

ω = . / sec  
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Figure 4.20.  Simulation of a commanded 1000ft/min climb rate using the final controller for region 7 

 

The final system is shown simulating a commanded altitude rate of 1000 ft/min in Figure 

4.20. Note that with the addition of thrust feedback, the throttle is adjusted 

simultaneously to maintain the desired speed. 

 

As with the other regions, the exercise of successive loop closures is useful but not 

practical for the task of scheduling many different conditions; therefore, an automated 

approach is developed. With the addition of throttle feedback, the problem becomes 

much more complex. Again, we will substitute place holders into the LTD system to 

make the algebra more manageable. 
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We need to close the loops around the throttle and the lift coefficient.  The control law is 

summarized as 
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The closed loop A-matrix, clA = A - BKC  is, 
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The characteristic polynomial of the closed-loop A-matrix is, 
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Simplifying Equation (4.25), 
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The equation is of the form, 
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The coefficients of the characteristic polynomial, in terms of the modal properties that we 

specify for the design (two integrator poles, the damping ratio and natural frequency), are 

shown below.  
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The coefficients of the characteristic polynomial, in terms of the system parameters, are 

shown below.  
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Since we have four gains and four coefficients, we are able to arbitrarily place the poles.  

Because the algebra is complex in the solution of these equations, we simplify the 

equations with following substitutions. 
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Finally, we have the following system of equations.  
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To obtain a solution, we use algebra to extract as much information from the system of 

equations as possible and then employ a simple iterative routine. This method proved to 

be satisfactory and is now outlined. 

 

First, we can simplify the 3C′  equation. 
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We end up with a quadratic equation in terms of 
14pk  where 

21ik is a term in the 

coefficients as shown in Equation (3.210). 
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Using 5C′ , 
4C′ , and 

2C′  we can get 
21ik in terms of 

14pk  as shown in Equation (3.212) . 
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   (4.27) 

 

Since we know that 
14pk  is always positive and on the order of 410− , a simple iteration 

algorithm was developed that begins with an initial 
14pk , calculates a 

21ik using Equation 

(3.213), and then tests the solution using Equation (3.214). Generally, the method yields 

two sets of workable gains. The solution chosen of the two workable sets is the solution 

with the lowest throttle gains.  This way the throttle is modulated the least.  
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5. The	Supporting	Functional	Logic	of	the	Longitudinal	

Control	System	
In the previous chapter, we developed the feedback control algorithms that stabilize the 

aircraft and drive it to the desired condition. The result was our basic, linear control 

model, equation (4.2), which can be expressed in matrix/operator notation as,  

 

 u = Ke (5.28) 

 

where u is the control vector (in our case, lift coefficient and thrust), e is the output error 

vector (which contains the indicated airspeed, Mach number, altitude, and altitude rate), 

and K is the constant matrix operator of proportional, integral, and feedback gains. Our 

goal is to squeeze standard piloting strategies into that basic, linear model and use it to 

control our non-linear dynamics. 

 

But a basic, linear control model is too simple to capture the complexities of piloting an 

aircraft throughout its entire flight envelope. In general, a pilot will provide different 

control inputs for a given error vector based on the flight regime. As an illustration of the 

different piloting strategies used in different flight regimes, consider the following. 

 

• During take-off, the pilot sets take-off thrust and a nominal stick location and 

holds them constant until the aircraft reaches its rotation speed. 

• In climb, the pilot fixes the thrust at climb thrust and uses the control stick to 

capture either airspeed or altitude rate. 

• In descent, the pilot fixes the thrust at descent thrust and uses the control stick to 

capture either airspeed or altitude rate. Our linear controller may be able to use 

the same lift coefficient controller as for climbs, but the fixed thrust value is 

different. 

• In steady, level flight, the pilot uses the throttle to hold the airspeed at the desired 

value and the control stick to hold the altitude. 

 

So there are cases in which there is no modulation of control inputs at all, cases in which 

only one control parameter is modulated, and cases in which they are both modulated. 

Since different flight regimes require different control strategies, we will need to develop 

a basic, linear controller for each flight regime. The purpose of this chapter is to define 

these different flight regimes, or regions, and the conditions that bound them, and to 

develop the algorithms for determining the desired condition within those regions. 

 

In the previous chapter, we introduced the concept of the desired output. Because our 

system uses multiple regions and multiple controllers, we need to differentiate between 

the desired output that each mathematical controller sees and the commanded output that 
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the system (in the real world this would be the pilot) is trying to attain. The commanded 

output, yc, typically comes from the user interface. Each region will use supporting 

functional logic to select a time-varying desired output, yd(t), that defines a “path” to the 

commanded output, yc. The desired output is then passed to the region’s controller and 

the controller determines the control inputs needed to follow that path. 

5.1 Control Strategies 

In this section, we briefly revisit the discussions of the previous chapter on the different 

control strategies used for different phases of flight and explicitly state the control law 

used for each. 

5.1.1 Altitude Rate Controller - Feeding Back Altitude Rate Only 

A pilot will accomplish speed changes in level flight typically by fixing the throttle 

appropriately (advanced for speed increase, reduced for speed decrease) and using the 

control stick to maintain level flight. To insure that the aircraft stays in level flight, the 

pilot will rely primarily on the altimeter and the attitude indicator. In a sense, he is using 

feedback control on his altitude rate (with a desired rate of zero) and allowing the aircraft 

to accelerate (or decelerate). 

 

Alternatively, a pilot can use the control stick to maintain a constant, non-zero altitude 

rate while keeping the throttle fixed. He can also follow a varying altitude rate that may 

be determined by a specific geometric path (i.e., following a glide slope or flight path 

angle). 

 

The pilot can also use the control stick to gain a balance of airspeed acceleration and 

vertical speed. This amounts to dividing the changing total energy between changes in 

potential and kinetic energy. It is also possible to exchange potential and kinetic energy 

without affecting the aircraft’s total energy much at all (e.g., descending and 

accelerating). By adjusting the control stick, the pilot can control how much energy goes 

to changing airspeed and how much goes to changing altitude. 

 

All of these regimes are examples of altitude rate control. The TGF simulator can use 

altitude-rate-only feedback to follow a constant or time-varying altitude rate using this 

control strategy. All that remains is for the region (i.e., the supporting functional logic) to 

tell the controller the desired altitude rate, 
d

h� . For altitude-rate-only feedback, equation 

(5.28) becomes  

 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )
14 14 14L p d i d b

C t k h t h t k h t h t dt k h t= − + − −∫� � � � �  (5.29) 
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5.1.2 Speed Controller - Feeding Back Speed Only 

Climbs and descents at constant airspeed are also typically accomplished without 

modulation of the throttle. For climbs, the throttle is advanced to the desired climb 

power, and for descents, the power is reduced to descent power.  The control stick is then 

adjusted to maintain the proper airspeed while the altitude is allowed to change.  The 

pilot uses information from the airspeed (or Mach) indicator to adjust the control stick to 

maintain speed. This type of control is fundamentally different from the speed change in 

level flight because the control stick is now controlling speed instead of altitude rate. The 

altitude rate is left to vary according to the throttle setting. 

The TGF simulator can use speed-only feedback to accomplish altitude changes using 

this control strategy. All that remains is for the region (i.e., the supporting functional 

logic) to tell the controller the desired speed, VIAS, or Mach number, M. For indicated 

airspeed feedback, equation (5.28) becomes  

 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )
11 11 11d dL p IAS IAS i IAS IAS b IAS

C t k V t V t k V t V t dt k V t= − + − −∫  (5.30) 

 

and for Mach feedback, equation (5.28) becomes  

 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )
12 12 12L p d i d b

C t k M t M t k M t M t dt k M t= − + − −∫  (5.31) 

5.1.3 Dual Controller - Feeding Back Speed and Altitude Rate 

A pilot will maintain steady, level flight typically by using the control stick to fly level 

and adjusting the throttle to hold the desired speed. To insure that the aircraft stays in 

level flight, the pilot will monitor the altimeter and the attitude indicator. To insure that 

the aircraft holds speed, the pilot will monitor the airspeed (or Mach) indicator.  

 

The TGF simulator can use this strategy to maintain steady, level flight, to fly a constant 

vertical speed at a specified airspeed, or to follow a specific speed-altitude profile, as on 

approach and landing. All that remains is for the region (i.e., the supporting functional 

logic) to tell the controller the desired speed and altitude rate. For IAS-based control, 

equation (5.28) becomes  

 

 
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

14 14 14

21 21 21d d

L p d i d b

p IAS IAS i IAS IAS b IAS

C t k h t h t k h t h t dt k h t

T t k V t V t k V t V t dt k V t

= − + − −

= − + − −

∫

∫

� � � � �

 (5.32) 

 

and for Mach feedback, equation (5.28) becomes  
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( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

14 14 14

22 22 22

L p d i d b

p d i d b

C t k h t h t k h t h t dt k h t

T t k M t M t k M t M t dt k M t

= − + − −

= − + − −

∫

∫

� � � � �

 (5.33) 

5.1.4 Altitude Capture 

Capturing altitude is a fundamental function that the longitudinal dynamics must 

perform; however, altitude is never a feedback parameter directly in the controllers 

designed for our ADM. Instead altitude rate is commanded in a manner such that altitude 

capture is obtained. Initially it was not clear that this was the best solution to the problem. 

In fact many direct altitude feedback strategies were tried, and the state space model still 

allows for altitude feedback. However, instead of direct altitude feedback, the altitude 

error is used to determine an appropriate value for 
d

h� , the desired altitude rate. The 

reason for this decision is based primarily on the need for a smooth transition between a 

control region that does not control altitude rate, and one that does. 
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Figure 5.1: Illustration of an aircraft capturing an altitude 

 

For regions in which the altitude is captured, the desired altitude rate is calculated by 

applying a gain to the difference between the desired altitude and the actual altitude. 

 

( )d dh
h K h h= −�
�     (5.34) 

 

We set a nominal value of 17
h

K
min

=� . Figure 5.1 shows how the descent rate varies 

over the final 70 feet and the smooth capture of the altitude when 7
h

K =� . 

 

There is still a problem to contend with at region transition. Consider an aircraft in, 

descent at idle throttle at a specified airspeed as shown in Figure 5.2. The aircraft 
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descends at whatever rate is required to maintain the commanded airspeed with an idle 

throttle; consequently, there is no direct control over the rate of descent. There is likely to 

be an undesired transient when the aircraft makes the transition to a region with 

controlled altitude rate. The cause of the undesirable transient is the fact that the aircraft’s 

altitude rate upon entering the new region and the desired altitude rate derived from 

Equation (5.34) will not necessarily match. The mismatch causes the control law to drive 

the initial ‘error’ to zero with excessive control inputs. Figure 5.2 shows the mismatch 

and the sudden increase in the descent rate. 

 

To solve this problem, the initial desired altitude rate is set equal to the aircraft’s current 

altitude rate. The measured (current) altitude and altitude rate are used to calculate the 

value of 
h

K �  by rearranging Equation (5.34). 

( )initial

current

h

d current

h
K

h h
=

−
�

�
     (5.35) 
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Figure 5.2: Altitude Rate During Region Transition 

 

When the aircraft is within 70 feet of the target altitude, 
h

K �  is returned to its nominal 

value of seven regardless of the initial calculated value. Seventy feet is chosen because it 

yields an altitude rate near 500 fpm, a standard value for altitude capture established by 

Federal Air Regulations. This change in 
h

K �  does yield an unrealistic jump in the altitude 

rate just before altitude capture but it is much smaller than at region transition and it 

ensures that the altitude is captured in a timely manner. It also prevents the previous 

descent or climb from affecting the continuing cruise performance of the aircraft that 
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would come from preserving either an unusually low or high 
h

K � .  Figure 5.3 shows the 

logic for calculating 
h

K �  

5.1.5 Speed Capture 

The feedback control laws were derived for small errors. In the steady, level flight control 

region, which uses speed control, the speed error is never more than 10 knots. This is a 

suitable speed to keep the control inputs from being excessive. But in the climb and 

descent regions, which also use speed control, it is possible for the speed error to be 100 

knots or more. Our controller would produce excessive control inputs to correct this 

error. 

 

To avoid these excessive control inputs, we must devise a varying desired speed profile 

that will produce acceptable control inputs and speed rates. A constant desired 

acceleration of one knot per second was chosen for its simplicity and suitability in 

producing an acceptable transient response. The initial desired speed upon entering a 

speed-controlled region is the actual speed. 
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Figure 5.3. Flow diagram for calculating 
h

K �  

 

 
0d

d d d

IAS IAS

IAS IAS IAS

V V

V V V t

=

= + ∆�
 (5.36) 

 

where 

 

 ( ) ( )1 * sign
d cIAS IAS IAS

ktV V V
sec

= −�  

 

The function, sign(x), returns +1 if x ≥ 0 and -1 otherwise. Once the indicated airspeed is 

within five knots of the commanded value, the desired speed is simply the commanded 

speed. 

 

For Mach control, the equations for desired Mach are similar. A constant desired 

acceleration of 0.02 Mach per second is selected. It is equivalent to an acceleration of one 

knot per second at 25,000 feet altitude and 300 knots. 

 

 
0d

d d d

M M

M M M t

=

= + ∆�
 (5.37) 

 

where 

 

 ( ) ( )10.02 * signd cM M M
sec

= −�  

5.2 Dividing the Flight Envelope into Regions 

Because of the need for different controllers and different supporting logic in different 

regimes of the flight envelope, we need to divide the flight envelope into regions. Each 

region’s control law, supporting logic, and desired output reflect the pilot’s decision logic 

in bringing the aircraft from its actual state to its desired state. 

 

All of the supporting functional logic for the longitudinal control system centers on the 

concept of the speed-altitude plane. The speed-altitude plane was used by Mukai (1992) 

during the development of Pseudocontrol, the original control system developed for the 

Pseudo Aircraft Simulation (PAS) system developed for NASA Ames. The speed-altitude 

plane has been revisited and adapted for the TGF project and has undergone extensive 

modification since it was used in PAS.  
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Figure 5.4. The Speed-Altitude Plane 

5.2.1 The Speed-Altitude Plane 

The speed-altitude plane is used to represent the aircraft’s actual position relative to its 

commanded position, with altitude error plotted on the vertical axis and speed error 

plotted on the horizontal axis. It allows us to split the aircraft’s en route flight envelope 

into different control regions. A diagram of the speed-altitude plane is shown in Figure 

5.4. 

 

The basic purpose of the speed-altitude plane is to emulate the way a pilot makes 

decisions about flying an aircraft. We define an area in the immediate vicinity of the 

commanded condition in which the aircraft is in steady, level flight. We set up speed 

error and altitude error bounds to define this steady, level flight region. We then need to 

define what to do outside of these bounds in order to bring the aircraft within them. 

 

The speed-altitude plane provides a means of generalizing these relationships and also 

provides insight into what the throttle setting should be based on the aircraft’s current 

energy level. 

5.2.1.1 The Line of Constant Energy 

The line of constant energy illustrates how an aircraft can have the same energy level at 

different speeds and altitudes. It is a means of determining whether the aircraft is low on 
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energy or high on energy with respect to its commanded condition; that is, does the 

aircraft need to add thrust or reduce thrust to attain the commanded condition. Originally, 

the line of constant energy was based on true energy calculations for the aircraft but as it 

evolved it became simply a gross representation of the aircraft’s energy. This section 

discusses the evolution of the line of constant energy.  

 

The total energy of an aircraft is the sum of its potential and kinetic energies. 

 

E = K.E. + P.E. = mgh + ½ mVa
2
 

 

The terms are defined as follows: 

 

• E: The total aircraft energy 

• m:  The aircraft mass 

• g:   The gravitational acceleration 

• h:   The altitude 

• Va:  The true airspeed 

 

The equation can also be written in terms of the energy per unit mass. 

 

 e = gh + ½ Va
2
 (5.38) 

 

The energy that the aircraft would have at some commanded state can be written 

similarly, 

 

 21
2 cc c ae gh V= +  (5.39) 

 

where ec is the total energy at the commanded state, hc is the commanded altitude, and 

ca
V  is the commanded true airspeed. Notice that it is quite possible for ec = e without the 

aircraft actually being at the commanded state.  That is to say, the aircraft could have the 

right amount of energy but be either fast and low or high and slow. This is illustrated in 

Figure 5.5 which shows the line of constant energy. The x- and y-axes on Figure 5.5 are 

the speed error and altitude error from some commanded state shown at the point (0,0). 

 

If the aircraft’s current state lies on the constant energy line, the aircraft already has 

enough energy to attain the commanded state. Therefore, the amount of throttle 

adjustment needed is minimal. However, if the aircraft lies below the constant energy 

line, the aircraft needs energy to attain the commanded state. Likewise, if the aircraft is 

above the energy line, the aircraft has excess energy and must lose energy to achieve the 

commanded state.  
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The constant energy curve is a parabola, as illustrated by the quadratic relationship 

between altitude and speed in equation (5.38). For practical control implementation, 

linear approximation to the constant energy curve in the speed-altitude plane is used, as 

shown in Figure 5.5. However, even this approximation is simplified because of 

transition problems between regions. The final form of the line of constant energy 

approximates the actual energy curve by forming a diagonal across the steady, level flight 

region, as shown in Figure 5.6.  

 

 

Figure 5.5. The constant energy line on the speed-altitude plane 
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Figure 5.6.  Illustration of the approximation for the constant energy line using the diagonal cut across the 

steady, level flight region (region 7) of the speed-altitude plane 

 

5.2.1.2 Bounding the Speed-Altitude Plane 

The speed error bound on the steady, level flight region is 10 knots. The simulation 

engineers chose this value because it is a bound typically used in real flight; an aircraft 

within ten knots of a controller-assigned speed is considered to be in compliance with 

that speed. The simulation engineers chose the altitude error bounds so that the slope of 

the diagonal of the steady, level flight region is the same as the slope of the constant 

energy line in the vicinity of a flight condition that is representative of en route flight: 

300 knots IAS @ 25,000 ft.  

 

At 25,000 feet altitude in the standard atmosphere, 300 knots IAS corresponds to 728 fps 

true airspeed (TAS) and a ten knot IAS speed difference corresponds to about a 22 fps 

speed difference in TAS. The slope of the constant energy curve at this point is given by 

the derivative of equation (5.38). Assuming that gravity is constant, 

 

 ( ) ( ) 21

2
ad e d gh d V

 
= +  

 
 

 

 
a a

de g dh V dV= +  (5.40) 

 

Using discrete notation, and substituting in the values corresponding to our speed change 

and flight condition, we can calculate the corresponding altitude change that would keep 

the total energy constant. 

line of constant 

energy approximation 

SPerror SPerror 

Region 7 
herror 

herror 
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 ( ) ( ) ( ) ( )20 32.2 728 22

497

a a
e g h V V

ft ft ft
h

s ss

ft
h

s

∆ = ∆ + ∆

= ∆ +

∆ =

 

 

We choose to round to 500 feet for the altitude error. 

 

The parameters needed to define the regions of the speed-altitude plane are the speed 

error, altitude error, and slope of the constant energy line. These parameters nominally 

are set as follows: 

 

• herror:  This is the altitude error used to bound the steady, level flight region and, 

consequently, the slope of the constant energy line of the speed-altitude plane. The 

nominal value is 500 feet. 

• SPerror:  This is the speed error used to bound the steady, level flight region. It needs 

to be defined in terms of knots for IAS-based control and in terms of Mach number 

for Mach-based control. 

• IAS-based:  SPerror = IASerror  = 10 knots. Aircraft are typically expected to hold 

their speeds within 10 knots. 

• Mach-based:  SPerror = Merror  = 0.022. This is the Mach error used to bound the 

steady, level flight region in the Mach speed-altitude plane. The value 

corresponds to a 10 knot IAS speed change at 300 knots IAS and 25,000 feet in 

the standard atmosphere. 

5.2.1.3 The Regions of the Speed-Altitude Plane 

The speed-altitude plane is divided into nine different regions. Each region has a different 

combination of control law and supporting functional logic.  The speed error on the 

speed-altitude plane is either represented in knots of indicated airspeed or in Mach 

number. Figure 5.7 shows the regions of the speed-altitude plane in terms of indicated 

airspeed. The regions are enumerated below with their various functions. 

 

• Steady, Level Flight (Region 7): In Region 7, the aircraft is sufficiently close to 

converging on a desired state. The pilot modulates the control stick and the throttle 

simultaneously to capture the desired state. 

• Climbing & Accelerating (Region 1):  In Region 1, the aircraft is low and slow and 

is, therefore, low on energy. The throttle is set to full and the pilot climbs and 

accelerates the aircraft, using the control stick to maintain a balance of airspeed 

acceleration and climb rate. 

• Level Acceleration (Region 2):  In Region 2, the aircraft is slow enough to be low 

on energy; therefore, the throttle is set to full. The pilot uses the control stick to 

capture and maintain the desired altitude while accelerating into Region 7.  
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Figure 5.7. The speed-altitude plane in terms of indicated airspeed 

 

• Descending & Accelerating (Region 25): This is an energy trade region, meaning 

that the aircraft is trading potential energy for kinetic energy. The throttle is set to idle 

and lift coefficient is used to capture a desired altitude rate that is a constant multiple 

of the altitude error. 

• Steady Descent (Region 3):  In Region 3, the aircraft is high enough to have excess 

energy; therefore, the throttle is set to idle. The pilot uses the control stick to capture 

and maintain the desired speed while descending into Region 7. 

• Descending & Decelerating (Region 4):  In Region 4, the aircraft is high and fast 

and is, therefore, high on energy. The throttle is set to idle and the pilot descends and 

decelerates the aircraft, using the control stick to maintain a balance of airspeed 

deceleration and descent rate that is weighted towards descending. 

• Level Deceleration (Region 5):  In Region 5, the aircraft is fast enough to have 

excess energy; therefore, the throttle is set to idle. The pilot uses the control stick to 

capture and maintain the desired altitude while decelerating into Region 7.  

• Climbing & Decelerating (Region 55): This is an energy trade region, meaning that 

the aircraft is trading kinetic energy for potential energy. The throttle is set to idle and 
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lift coefficient is used to capture a desired altitude rate that is a constant multiple of 

the altitude error. 

• Steady Climb (Region 6): In Region 6, the aircraft is low enough to be low on 

energy; therefore, the throttle is set to full. The pilot uses the control stick to capture 

and maintain the desired speed while climbing into Region 7. 

 

The reader should notice a similarity between the basic strategy in each of the regions 

and the discussion of Section 4.1.1, where the basic piloting strategies for different types 

of maneuvers are outlined. The speed-altitude plane is a means of mechanizing the 

control strategy that a pilot would use depending on the aircraft’s state relative to the 

commanded state.  

5.2.1.4 Region Management in the Speed-Altitude Plane 

The error between the aircraft’s commanded and actual states is compared to the error 

bounds of the speed-altitude plane. This determines the aircraft’s control region in the 

speed-altitude plane. The absolute errors between the aircraft’s actual and commanded 

states, e1 through e4, are defined below. 

 

 1 IASc IAS
e V V= −  (5.41) 

 2 c
e M M= −  (5.42) 

 3 c
e h h= −  (5.43) 

 4 c
e h h= −� �  (5.44) 

 

The terms are defined as follows: 

 

• 
IASc

V :  The commanded indicated airspeed (kts) 

• VIAS:   The actual indicated airspeed (kts) 

• Mc:    The commanded Mach number 

• M:     The actual Mach number 

• hc:      The commanded altitude (ft) 

• h:       The actual altitude (ft) 

• 
c

h� :      The commanded altitude rate (ft/min) 

• h� :        The actual altitude rate (ft/min) 

 

We can use Boolean expressions to define four true-false parameters that coincide with 

the bounds and definitions of the speed-altitude plane. These are used to aid the flow 

algorithm (illustrated below) that determines which region logic to use. For example, if 

the commanded speed is more than ten knots below the actual speed, the aircraft is 

defined to be fast. These speed-altitude plane Booleans are defined in Table 5.1. 
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LOW 
3 error

e h>  

HIGH 
3 error

e h< −  

SLOW 
s error

e SP>  

FAST 
s error

e SP< −  

LOWENERGY ( )3 * se m e>  

Table 5.1:  Speed - Altitude Plane Booleans 

 

This section describes the control strategies and supporting functional logic used in each 

of the regions of the speed-altitude plane. 

5.2.1.4.1 Steady, Level Flight (Region 7) 

Region 7 is the most highly used region because it represents the aircraft at or near 

steady, level flight. The aircraft is close enough to a desired state that our linear controller 

can capture that state without excessive control inputs. Both the lift coefficient and the 

thrust are controlled. The control law is given by equations (5.32) and (5.33) for IAS-

based and Mach-based control, respectively. The desired altitude rate is given by 

equation (5.34) and the desired speed is given by equations (5.36) and (5.37) for IAS-

based and Mach-based control, respectively. 

5.2.1.4.2 Accelerating (Region 2) 

In Region 2, the aircraft is slow enough to be lowenergy, but it may be above or below 

its commanded altitude. Because the aircraft is lowenergy, the throttle is advanced to full 

throttle. The system uses the lift coefficient to capture and maintain the desired altitude 

rate while accelerating into Region 7. The control law is given by equation (5.29) with 

the desired altitude rate given by equation (5.34) (the same as for Region 7).  

5.2.1.4.3 Descending & Accelerating (Region 25) 

Region 25 is an energy trade region. Throttle is set to idle and the desired altitude rate is a 

constant multiple of the altitude error. , The control law is given by equation (5.29) with 

the desired altitude rate given by equation (5.34). 
h

K �  must be large enough so that the 

desired descent rate is large enough to permit acceleration with an idle throttle. If the 

descent rate is too small, the energy loss of a negative (T-D) (because of the idle throttle) 

will force a deceleration. A value of 1
h

K =�  is suggested. 

 

An alternative to setting a constant idle throttle is to set the throttle so that the thrust 

produced is equal to the drag. With no energy being lost, the aircraft would be forced to 

accelerate while capturing the desired descent rate. From equation (2.59), with T=D,  
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 sin
a

a

h
V g g

V
γ= − = −

�
�   

 

The problem from a software engineering standpoint is that the drag is not readily 

available to the throttle controller. However, the above equation can be used to calculate 

a desired acceleration and a new throttle controller could be developed that captures that 

desired acceleration. This approach has shown promise in preliminary tests, but has not 

been implemented. It requires a dual controller, with lift coefficient controlling altitude 

rate and throttle controlling acceleration. 

5.2.1.4.4 Decelerating (Region 5) 

In Region 5, the aircraft is fast enough to be not lowenergy, but it may be above or 

below its commanded altitude. It has more energy than it needs so the throttle is reduced 

to idle. It is the same as Region 2 except for the throttle setting.  The system uses the lift 

coefficient to capture and maintain the desired altitude rate while decelerating into 

Region 7. The control law is given by equation (5.29) with the desired altitude rate given 

by equation (5.34) (the same as for Region 7).  

5.2.1.4.5 Climbing & Decelerating (Region 55) 

Region 55 is a subset of Region 5 that uses a constant descent rate; that is, the greater of 

its current altitude rate and 500 fpm. 

 

 ( )max ,500
d

h h fpm=� �  

Region 25 is an energy trade region. Throttle is set to max full and the desired altitude 

rate is a constant multiple of the altitude error. , The control law is given by equation 

(5.29) with the desired altitude rate given by equation (5.34). 
h

K �  must be large enough 

so that the desired climb rate is large enough to permit deceleration with full throttle. If 

the climb rate is too small, the energy gain of a positive (T-D) (because of the full 

throttle) will force an acceleration. A value of 1
h

K =�  is suggested. 

 

An alternative to setting a constant full throttle is to set the throttle so that the thrust 

produced is equal to the drag. With no energy being lost, the aircraft would be forced to 

decelerate while capturing the desired climb rate. From equation (2.59), with T=D,  

 

 sin
a

a

h
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V
γ= − = −

�
�   

 

The problem from a software engineering standpoint is that the drag is not readily 

available to the throttle controller. However, the above equation can be used to calculate 
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a desired acceleration and a new throttle controller could be developed that captures that 

desired acceleration. This approach has shown promise in preliminary tests, but has not 

been implemented. It requires a dual controller, with lift coefficient controlling altitude 

rate and throttle controlling acceleration. 

5.2.1.4.6 Descending (Region 3) 

In Region 3, the aircraft is high enough to be not lowenergy. It may be above or below 

its desired speed. Because the aircraft is not lowenergy, the thrust is set to idle. The 

aircraft uses lift coefficient control to capture its desired speed while descending into 

Region 7. The control law is given by equation (5.30) and equation (5.31) for IAS-based 

and Mach-based control, respectively. The desired speed is given by equations (5.36) and 

(5.37) for IAS-based and Mach-based control, respectively. 

5.2.1.4.7 Climbing (Region 6) 

In Region 6, the aircraft is low enough to be lowenergy. It may be above or below its 

desired speed. Because the aircraft is lowenergy, the thrust is set to full. The aircraft uses 

lift coefficient control to capture its desired speed while climbing into Region 7. The 

control law is given by equation (5.30) and equation (5.31) for IAS-based and Mach-

based control, respectively. The desired speed is given by equations (5.36) and (5.37) for 

IAS-based and Mach-based control, respectively. 

5.2.1.4.8 Climbing & Accelerating (Region 1) 

In Region 1, the aircraft is low and slow and is, therefore, lowenergy. The throttle is set 

to full and the system uses altitude rate feedback to maintain a balance of airspeed 

acceleration and climb rate that is weighted towards acceleration. The control law is 

given by equation (5.29). 

 

Since the system uses altitude rate feedback, we need to determine the desired altitude 

rate that will yield the balance of airspeed acceleration and climb rate mentioned above. 

With the throttle set to full, the aircraft’s thrust is typically greater than its drag. This 

means that the aircraft’s total energy is increasing. We need to determine how much of 

this energy increase goes towards accelerating and how much goes towards climbing. An 

equation relating acceleration and altitude rate is given by equation (2.59), 
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− −
= − = −

�
�  (2.59) 

 

which can be written in the form of the changing energy.  
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Note that this equation is presented in BADA as equation (3.1-1). Note also that this 

equation is the time derivative of equation (5.38). We can rewrite this equation to express 

an aircraft’s desired altitude rate in terms of an energy ratio, ER. 
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 (5.46) 

 

The energy ratio, ER, is an expression of the ratio of changing kinetic energy to changing 

potential energy. We can use it to express how much of the changing energy (i.e., the 

thrust energy being added to the system) goes towards changing speed and how much 

goes towards changing altitude. BADA uses the same approach, but expresses equation 

(5.46) in terms of an energy share factor as a function of Mach number. For acceleration 

in climb, BADA recommends an energy share factor that corresponds to an energy ratio 

of ER = 2.3, and that is what we use for our controller. With the desired altitude rate 

determined by equation (5.46) we can use an altitude rate controller to capture that 

altitude rate. 

5.2.1.4.9 Descending & Decelerating (Region 4) 

In Region 4, the aircraft is high and fast and is, therefore, not lowenergy. The throttle is 

set to idle and the system uses altitude rate feedback to maintain a balance of airspeed 

deceleration and descent rate that is weighted towards the descent. The control law is 

given by equation (5.29). 

 

Just as in Region 1, we need to determine the desired altitude rate that will yield the 

balance of changing airspeed and altitude. For deceleration in descent, BADA 

recommends an energy share factor that corresponds to an energy ratio of ER = 2.3; 

however, our tests have shown that an energy ratio of ER = 1.0 is more suitable. To 

determine the desired altitude rate for Region 4, we use equation (5.46) with the throttle 

set to idle thrust and the energy ratio set to ER = 1.0. 

5.2.1.5 Constant Vertical Speed (CVS) Maneuvers – (Formerly Region 8) 

When a vertical speed is commanded, the aircraft is performing a constant vertical speed 

(CVS) maneuver. The maneuver is completed when the aircraft becomes not fast and 

not slow. There are three separate CVS maneuvers: idle-thrust CVS, max-thrust CVS, 

and dual-control CVS. If the speed error is within SPerror, the aircraft is in a dual-control 

CVS. Otherwise, if the altitude error is positive, the aircraft is in a max-thrust CVS 

maneuver and if the altitude error is negative, the aircraft is in an idle-thrust CVS 

maneuver. 
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5.2.1.5.1 Dual-Control CVS Maneuver 

The control law is given by equation (5.32) and equation (5.33) for IAS-based and Mach-

based control, respectively – the same as for Region 7. The desired speed is given by 

equations (5.36) and (5.37) for IAS-based and Mach-based control, respectively. The 

desired altitude rate is as commanded. 

 

Once in a dual-control CVS, if the aircraft becomes slow, that means it is losing speed. It 

is expected that this can happen only in a climbing maneuver in which the aircraft does 

not have enough thrust or power to maintain airspeed and vertical speed concurrently. If 

left in the CVS climb, the speed will only continue to fall. In this case, the aircraft must 

break out of the CVS maneuver and into a Mach or CAS climb. 

 

Once in a dual-control CVS, if the aircraft becomes fast, that means it is gaining speed. It 

is expected that this can happen only in a descent maneuver in which the aircraft does not 

have enough drag to maintain airspeed and vertical speed concurrently. In this case, there 

is an alternative to breaking out of the CVS maneuver: deploy speed brakes. If the speed 

error moves back within ½ the SPerror (i.e., five knots), speed brakes can be turned off. It 

is possible for the aircraft to get in a cycle of turning speed brakes on and off – an 

unrealistic scenario – but this should yield acceptable performance. 

 

With speed brakes on, if the aircraft continues to gain speed (i.e., if the speed error 

exceeds 1 ½ times the SPerror - i.e., 15 knots), it shall break out of the CVS descent and 

into a Mach or CAS descent. 

5.2.1.5.2 Idle-Thrust CVS Maneuver 

In this maneuver, the aircraft is not lowenergy and is descending. The altitude error is 

necessarily negative (an entry condition) and the commanded vertical speed is negative. 

The speed is not controlled; the maneuver is entirely independent of speed behavior. The 

throttle is set to idle and the system uses altitude rate feedback to maintain the 

commanded vertical speed. The control law is given by equation (5.29). 

 

This maneuver also needs a break-out condition. It is necessary for the success of this 

maneuver that the aircraft’s energy rate is negative. This is the purpose of setting idle 

thrust. As an example, if the commanded descent rate is so high that the aircraft must 

accelerate to extreme speeds in order to capture the commanded descent rate, the 

aircraft’s energy may actually be increasing, even though the throttle is at idle. Therefore, 

if the energy increment, as given by equation (5.40), is positive, the aircraft can first 

deploy speed brakes. If the energy increment is still positive, the aircraft shall break out 

of the CVS descent and into a Mach or CAS descent. 

5.2.1.5.3 Max-Thrust CVS Maneuver 
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In this maneuver, the aircraft is lowenergy and is climbing. The altitude error is 

necessarily positive (an entry condition) and the commanded vertical speed is positive. 

The speed is not controlled; the maneuver is entirely independent of speed behavior. The 

throttle is set to max climb thrust and the system uses altitude rate feedback to maintain 

the commanded vertical speed. The control law is given by equation (5.29). 

 

This maneuver also needs a break-out condition. It is necessary for the success of this 

maneuver that the aircraft’s energy rate is positive; this is the purpose of setting max 

climb thrust. As an example, if the commanded climb rate is so high that the aircraft must 

fall to dangerously low speeds in order to capture the commanded climb rate, the 

aircraft’s energy may actually be decreasing, even though the throttle is at its maximum. 

Therefore, if the energy increment, as given by equation (5.40), is negative, the aircraft 

shall break out of the CVS climb and into a Mach or CAS climb. 

5.2.2 Taking off 

If an aircraft is initiated in the simulation as a take-off, the guidance module generates a 

sequence of legs that will take the aircraft to its low-altitude cruising speed and 6000 feet 

altitude. That sequence is the take-off ground run, rotation, lift-off, initial climb, and 

cruise at 6000 feet altitude. The take-off ground run, rotation, and lift-off legs are the 

“take-off” legs. An aircraft cannot enter either of these legs unless it is initiated as a take-

off and it must successively satisfy the boundary conditions of each leg to progress into 

the initial climb. Additionally, these legs use their own controllers and are, therefore, 

given their own regions. The initial climb and level cruise legs use the region 

management of the speed-altitude plane. 

5.2.2.1 Take-Off Ground Run (Region 12) 

The take-off ground run region uses an open-loop controller to accelerate the aircraft 

until it is within ∆VR of its rotation speed while keeping on the ground. The region 

specifies constant control inputs. A lift coefficient of zero is specified to keep the aircraft 

from lifting off during the ground run and take-off thrust is specified to give the aircraft 

its maximum acceleration. 
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 (5.47) 

 

Boundary Condition:  VIAS < VR - ∆∆∆∆VR  

 

The constant ∆VR is defined the same for all aircraft. It represents the speed at which the 

simulated aircraft enters the rotation region, region 13. Conceptually, it is intended to 

represent the increment below rotations speed at which the pilot begins to pull back on 
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the control stick to lift off the runway. Its value in NextGen is selected so as to provide 

ample time for the controller of region 13 to ramp up to the aircraft’s rotation lift 

coefficient. 

 

     ∆VR = 20 knots  

5.2.2.2 Rotation (Region 13) 

The sole purpose of the rotation region is to ramp the lift coefficient up from zero to the 

aircraft’s rotation lift coefficient as a function of speed. At first look, this requires an 

open-loop controller that ramps the lift coefficient between these two points as a function 

of time, but this would require a unique controller form. TGF programmers and engineers 

decided that it would be easiest to implement a controller of the same form as all the 

other controllers, i.e., of the form of equation (5.28). This requires the development of 

gains that cause the feedback controller to mimic our desired open-loop behavior. 

 

Equation (5.28) is a shortened form of equation (4.2), which is rewritten here. 

 

 ( ) ( ) ( ) ( )t t t t∫
t

p i b
0

u = K e + K e dt - K y  (4.2) 

 

We desire lift coefficient behavior that increases steadily. Since indicated airspeed 

increases with time during the ground run, we simplify our controller by selecting that 

output only. We also specify that the desired speed is the rotation speed throughout the 

region. The single input, single output (SISO) system is then, 
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The lift coefficient needed to lift the aircraft off the runway at rotation speed is dubbed 

the rotation lift coefficient. 
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We would like the lift coefficient to change from zero at the beginning of region 13 to the 

rotation lift coefficient when the aircraft reaches its rotation speed. At rotation speed, we 

want the rate of change of the lift coefficient with speed to flatten out so that we don’t 

overshoot it and impose undo drag on the aircraft. We, therefore, specify the following 

conditions for our controller. 

 

 CL(VR - ∆VR) = 0  
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 CL(VR) = 
RL

C  

 ( )( ) 0
L R

IAS

d
C V

dV
=  

 

The bound of region 13 is defined by aircraft speed only. Once the aircraft speed is 

greater than the rotation speed, control is passed to region 14. A lower bound is not 

specified; once control is passed from region 12, the aircraft stays within region 13 until 

the boundary condition is satisfied. 

 

Boundary Condition:  VIAS ≤ VR  

 

To simplify integration, we assume the indicated airspeed in region 13 has constant 

acceleration; i.e., it is of the following form. 

 

 ( )IAS IAS IAS
V V t V constant= =� �  (5.49) 

 

We transform equations (5.48) and (5.49) into functions of the indicated airspeed. 
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We now have an equation relating the lift coefficient to the indicated airspeed. 
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The derivative of equation (5.50) is, 
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The initial conditions plugged into equations (5.50) and (5.51) yield the following 

equations. 
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This system yields the following solution for our region 13 controller. 
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 (5.52) 

 

The region 13 controller is given by equation (5.48). 

5.2.2.3 Lift-Off (Region 14) 

When the aircraft reaches its rotation speed, the pilot pulls back on the control stick to lift 

off the runway, but maintains take-off thrust and take-off flaps. He uses this 

configuration until he reaches the maneuver altitude. NextGen operates similarly: control 

is passed to region 14 at rotation speed and the aircraft remains in region 14 control until 

it reaches its maneuver altitude, set to 400 feet AGL in NextGen. Therefore, we need a 

controller that returns take-off thrust and uses the lift coefficient to control speed. In this 

sense, region 14 is similar to region 6 (constant speed climbs) except that it uses take-off 

thrust.  
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Boundary Condition:  h ≤ 400 ft AGL  

 

The controller is given by equation (5.30). Additionally, as soon as we enter this region, 

we can raise the landing gear, which amounts to removing the gear drag coefficient 
gearD

C  

from the drag equation. 

5.2.3 Landing Region Management 

An aircraft that has received the command to begin the landing sequence will remain in 

the speed-altitude plane regions until it reaches its glide slope. Once the aircraft reaches 

the glide slope, it begins the landing sequence and progresses through regions 9, 10, and 

11. A new commanded altitude will move control back to the speed-altitude plane 

manager (i.e., landing is aborted). It is assumed that Mach-based control is not used for 

any landing maneuver, so Mach-based controllers are not considered. 

5.2.3.1 Preparing for Approach 

In many cases, an aircraft is instructed to begin preparations for approach. An 

unrestricted aircraft may begin bleeding off energy by decelerating on its own. In the real 

world, pilots will prepare for the approach in this way, particularly if they are familiar 

with the approach profile for their arrival airport. Tables Table 5.2 and Table 5.3 outline 

the desired speed profile as a function of altitude for an unrestricted aircraft that is on 

approach. The schedule comes from section 4 of the BADA User Manual. This schedule 

is used for aircraft before and on the glide slope. For intermediate altitudes, linear 

interpolation is used to determine the desired speed. In the table, Vdes,1 is the aircraft’s 

preferred descent speed below 10,000 feet altitude, available from BADA. 

 

Altitude (ft) Desired Speed, 
dIASV  (kts) 

0 1 3.
LDstallV  

1000 1 3 5.
LDstallV +  

1500 1 3 10.
LDstallV +  

2000 1 3 20.
LDstallV +  

3000 1 3 50.
LDstallV +  

6000 MIN(Vdes,1,220) 

10,000 MIN(Vdes,1,250) 

Table 5.2  Desired Descent Speed Schedule for Jet and Turboprop Aircraft Preparing for 

Approach 
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Altitude (ft) Desired Speed, 
dIASV  (kts) 

0 1 3.
LDstallV  

500 1 3 5.
LDstallV +  

1000 1 3 10.
LDstallV +  

1500 1 3 20.
LDstallV +  

6000 1 3 50.
LDstallV +  

10,000 Vdes,1 

Table 5.3  Desired Descent Speed Schedule for Piston Preparing for Approach 

5.2.3.2 Approach (Region 9) 

Because the aircraft is following the glide slope (a linear altitude profile) and a preferred 

speed profile, it needs a controller that feeds back speed and altitude rate. The control law 

is given by equation (5.32). 

 

The only difference is in the development of the desired output. Region 9 specifies the 

aircraft’s speed profile as a function of distance from the runway threshold. Alternatively, 

the aircraft can be speed restricted with a commanded speed. Either way, region 9 

specifies a desired altitude rate that will have the aircraft descend along the glide slope. 

 

The guidance module defines the altitude profile based on the aircraft’s distance from the 

glide slope antenna of its assigned runway. The guidance module defines a distance, dGS, 

as the distance parallel to the runway from the glide slope antenna to the aircraft. The 

aircraft’s desired altitude is a function of that distance and the angle of the glide slope 

antenna’s signal, γGS. 

 

 tan
d GS GS GS

h h d γ= =  (5.53) 

 

The aircraft’s desired altitude rate must consider the local glide slope altitude as well as 

the aircraft’s altitude relative to the glide slope. As in Region 7, equation (5.34) is used to 

determine the altitude that would correct the aircraft’s altitude error, but we must also 

consider that the desired altitude is changing per equation (5.53). We add the derivative 

of equation (5.53) to equation (5.34) to get the desired altitude rate for Region 9. 
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The time derivative of the aircraft’s distance from the runway threshold is the aircraft’s 

groundspeed projected into the plane of the localizer. If we assume that the aircraft 

captures the localizer at the same time as the glide slope, we needn’t concern ourselves 

with the angle between the aircraft’s ground path and the localizer. This is a reasonable 

assumption that makes the equation much simpler. Additionally, since the ground speed 

and the distance from the localizer are defined in opposite directions, a negative sign 

results. 

 

 ( ) tand d G GSh
h K h h V γ= − −�
�  (5.54) 

5.2.3.3 Landing Flare (Region 10) 

When the aircraft is within 100 ft above the runway, it begins the landing flare. The 

landing flare region (region 10) is a region of heightened control sensitivity to match the 

desired flare profile. The desired profile is a quadratic relationship between height above 

the runway and desired altitude rate. It was designed to be tangent to a 3° glide slope at 

100 ft above the runway and to touch down on the runway at 1 ft/s. 

 

 ( ) ( )
2

0.0011 0.22 1
d rwy rwy

h h h h h= − − − −�  

 

In this equation, height above the runway, (h-hrwy), is in feet and the desired altitude rate, 

d
h� , is in ft/s. The desired speed is the aircraft’s landing speed, VLD. The control law is 

given by equation (5.32). 

5.2.3.4 Landing Ground Run (Region 11) 

Once the aircraft touches down, it enters the landing ground run region (region 11). In the 

landing ground run, the thrust is throttled back to idle, the lift coefficient is set to zero, 

and the drag coefficient is increased by the spoiler coefficient (to simulate the 

deployment of the spoiler). There is no feedback control in this region. When the speed is 

20 knots below the landing speed, the aircraft is terminated from the simulation. 

 

 
max

0

idle

L

T

C

T C T

=

=
 (5.55) 

5.3 Throttling in Regions 1 Through 6 

When the thrust controller returns a thrust that differs from the current thrust, we must 

consider that the thrust difference may not be available in one time step; particularly 

when the difference is the full range from idle to max thrust, and particularly when the 

engine is a turbine engine. To account for this, a simple spooling lag has been added to 

the controller to limit the maximum amount that the thrust can change in a time step.  
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max
max

lag

T
T t

k
∆ = ∆      (5.56) 

 

The term klag is the lag factor. Conceptually, it is the time it takes the engine to spool 

from zero thrust to maximum thrust. While spooling is not applicable to piston engines, 

klag is still used, just at a much smaller value. The current values for the different engines 

are presented below. 

 

turbofans: klag = 20 sec 

turboprops: klag = 5 sec 

pistons: klag = 2 sec 

 

We have chosen to model engine spooling in the longitudinal control logic rather than in 

the engine. Certainly, the real turbofan aircraft has spooling in the engine; however, 

spooling in the engine would introduce a troublesome nonlinearity into the open loop 

dynamics. Such nonlinearities would undoubtedly expand the control logic and increase 

the number of gains needed, and they would require extensive engineering effort to 

develop a sufficient control law. Furthermore, the location of the spooling has no bearing 

on the perceived motion of the aircraft.  
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6. The	Selection	of	Gains	
In Section 5, we determined feedback control strategies for each of the regions in the 

speed-altitude plane. Furthermore, much effort was expended to develop a means to 

calculate acceptable gains for the different regions.  The purpose for these computational 

methods was two-fold.  First, there were many aircraft models to develop. Manually 

determining gains using root locus or bode techniques would be time consuming and 

would require a skilled controls engineer.  Secondly, it was expected that each aircraft 

would need to have a schedule of gains to provide sufficient performance throughout the 

aircraft’s flight envelope. Therefore, each aircraft would require gains to be calculated at 

many different reference conditions.  

 

However, by carefully choosing the reference flight condition, it is possible to choose one 

set of gains that will work for the aircraft’s entire flight envelope. This section documents 

the decision process that led to the final conclusion that gain scheduling would not be 

necessary. 

6.1 The Aircraft’s Flight Envelope 

For a given aircraft weight, there are generally two parameters that define the aircraft’s 

flight envelope:  altitude and airspeed. The flight envelope, shown in Figure 6.1, 

illustrates how fast and slow the aircraft can fly and how high the aircraft can fly.  

 

Airspeed

Altitude

 

Figure 6.1.  An example flight envelope 

 

Of course, as the aircraft’s weight changes, so do portions of the flight envelope of the 

aircraft; therefore, there are three parameters that affect the aircraft’s dynamic condition.  

 

In an effort to remove one of these parameters, Section 3 demonstrated that the flight 

envelope could be represented with true airspeed and lift coefficient rather than true  
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airspeed, altitude and weight. The phugoid dynamics could be represented exclusively in 

terms of lift coefficient and true airspeed if a trimmed aircraft is assumed. The only term 

that varied with weight was the thrust control derivative, which contributes to the forcing 

function of the system.  

 

Therefore, the flight envelope can be modeled as shown in  Figure 6.2. Only reasonable 

trim conditions are considered.  Figure 6.2 shows the high-weight/high-altitude and low-

weight/low-altitude stall condition boundaries, which encompass an area labeled as the 

useable range. This useable range represents all possible trim conditions for the aircraft.  

Outside of that range, the aircraft either must fly too fast, (i.e. faster than Mach 0.9) or 

must have air denser than sea level.  Note that while the Region 7 controller may use this 

entire envelope, in the other regions, the envelope is bounded on the left by the max L/D 

lift coefficient. The interesting observation here is that the useable area is rather small 

when compared to the total range of viable lift coefficients and true airspeeds.  One must 

ask the question, how much modal property variation can there be within this range?  

 

To answer this question, the aircraft’s flight envelope was represented in yet another way. 

The locus of all possible phugoid poles for the entire flight envelope was plotted on a 

single graph. The aircraft’s speed, altitude, and weight were varied encompassing the 

entire range of reasonable trim conditions. The results are shown in Figure 6.3. From the 

locus we can see three extremes. Roughly, the points are: 

 

• -0.0011 ± 0.056i    0 057   0 19
pn p

radω ξ= =. .sec     High lift coefficient at highest 

trimmable airspeed  

 

• -0.0074 ± 0.042i  0 043   0 17
pn p

radω ξ= =. .sec     Low lift coefficient at highest 

trimmable airspeed 

 

• -0.0062 ± 0.099i 0 099   0 063
pn p

radω ξ= =. .sec      High lift coefficient at lowest 

trimmable airspeed.  

 

While there is considerable variation in frequency and damping, it is plain to see that the 

aircraft needs an increase in damping to have acceptable modal properties.  
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Figure 6.2.  The flight envelope for a DC-9 in terms of CL and True Airspeed 

 

Figure 6.3.  The locus of Phugoid poles for the entire flight envelope of a DC-9 in the clean configuration 
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6.2 Determining Acceptable Modal Properties 

In previous sections of the document, a considerable effort was made to determine gains 

that would yield desirable transient responses for the aircraft’s phugoid dynamics. 

Generally, determining what is desirable is easy.  Most dynamic systems are considered 

to be well behaved if they have a damping ratio of 0.7 and a frequency sufficiently high 

enough to remove transients quickly.  A harder question to answer however is what 

dynamic properties are sufficient. That is to say while it may be obvious what is 

desirable, it may not at all be obvious how to determine the range of acceptable values. 

Different types of operations may be more or less sensitive to poor uncontrolled 

dynamics. This section addresses the question of just how precisely the phugoid 

dynamics must be held to a specified set of modal properties.  

 

There is no precise answer to this question. However, from observation of the aircraft 

flying with varied modal properties, one can conclude that a very wide range of 

properties is acceptable. First, consider the most important state variables in the 

longitudinal dynamics from the pilot’s point of view:  speed and altitude. The control 

system must be able to drive the aircraft to different speeds and altitudes. Consider 

changes in altitude. The feedback control systems don’t use altitude explicitly, but rather 

feedback its derivative, altitude rate. Because of the integral relationship between the 

two, altitude tends to be insensitive to small transients in altitude rate. Furthermore, the 

careful design of the desired output vector minimizes large errors that would produce 

undesirable transients. In addition, the steady state error between the desired output 

vector and the actual output vector is of little concern until the desired output reaches the 

commanded output.. Zero steady state error is important only when the commanded 

output values have been reached. This is in contrast, of course, to a mission such as 

precise terrain following where the error in following a time-varying output vector would 

be critical. 

 

While it is difficult to put a range on acceptable modal properties, we can state some 

general guidelines that are based purely on observation.  These are: 

 

• The damping ratio of the mode is more important than the frequency 

• The damping ratio can vary from roughly 0.5 – 1.0 and achieve satisfactory 

performance 

• The frequency can vary from 0 1. rad
sec  to 1 0. rad

sec  and still yield acceptable results. 

 

This is a rather large range which suggests that a control system with even meager 

performance is likely to be acceptable.  Most importantly, however, such a wide range 

suggests that a single set of gains, if chosen carefully, could accommodate the entire 

flight envelope of the aircraft.  
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6.3 Choosing a Single Reference Condition for Gain Calculation 

To choose a single reference condition that would serve as representative of the whole 

flight envelope, several conclusions from Section 3 must be revisited. These conclusions 

are: 

 

• ζ p L
D

=
1

2a f ;  The damping of the mode is inversely proportional to the L/D ratio 

 

• ω p

a

g

V
=
F
HG
I
KJ

2 2

2
;  The frequency of the phugoid is inversely proportional to the true 

airspeed. 

 

The lift coefficient that yields the highest L/D ratio, 
( )L

D
LC

max

, has the lowest damping. 

This occurs at the bottom of the thrust curve, i.e., at the bucket speed. Any variation in 

the lift coefficient on either side of the thrust curve will yield a decrease in the L/D ratio 

and, therefore, an increase in phugoid damping.. Furthermore, the lowest true airspeed 

will have the highest phugoid frequency.  Using this information the following reference 

condition was chosen. 

 

• Choose the trim condition for the maximum L/D ratio 

• Using the lift coefficient for maximum L/D, trim the aircraft with the lowest possible 

true airspeed.  Generally this is done by choosing a low altitude and a low weight.  

 

The rationale for gain selection is as follows: 

 

• Since it is natural for the phugoid damping to increase, select gains at the reference 

condition that puts the damping near the lower bound of acceptable. As the lift 

coefficient varies, the damping will increase and fall within the acceptable range. 

• Since the phugoid frequency decreases with increasing speed, select gains to put the 

frequency and the reference condition near the top of the acceptable frequency range. 

As the velocity increases, the frequency will come down and stay within the 

acceptable range. 

 

Of course, in practice there is no guarantee that a system augmented with feedback 

control will maintain any of its open loop tendencies so the rationale as stated is merely a 

vague guideline.  In reality different properties work better, however the stated reference 

condition did turn out to be a good choice.  
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6.4 Evaluating System Performance with Scheduled Gains 

In practice, the aircraft dynamics did not vary as predicted when feedback control was 

applied; however, through some experimentation, the following modal properties were 

found to yield favorable results. 

 

For jet (turbofan) and turboprop aircraft: 

• Integrator pole locations:  -0.20, -0.25 

• ωp = 0.25 rad/sec, ζp = 0.9 

For piston aircraft: 

• Integrator pole locations:  -0.20, -0.25 

• ωp = 0.40 rad/sec, ζp = 0.9 

 

Gains were calculated for the DC-9 aircraft in all control regions. Using these desired 

modal properties the loci of poles over the entire flight envelope are plotted in Figure 6.4 

- Figure 6.7. A key to the figures is presented in Table 6.1. The poles are plotted only for 

the corners of the flight envelope as defined by the lift coefficient, altitude, and weight. 

 

Table 6.1  Marker key to Figure 6.4 - Figure 6.7 

Outer marker - Lift Coefficient 

 box front-side 

 circle bucket 

 diamond back-side 

Middle marker - Altitude 

 box sea level 

 circle mid-range altitude 

 diamond service ceiling 

Inner marker - Weight 

 + empty weight 

 x mid-range weight 

 dot max take-off weight 

 

Consider altitude-rate-only feedback.  The locus of closed loop poles produced for the 

aircraft is in Figure 6.4. Notice that the lowest phugoid damping occurs on the back-side 

of the thrust curve, instead of at the bucket speed as predicted earlier. The highest 

phugoid frequencies occur at sea level, as predicted. One should note the location of the 

integral poles since they stray into the right-half-plane. This means that our analysis of 

the linear system is predicting instabilities near stall speed, particularly at low weights 

and low altitudes. We will have to validate this flight condition by analyzing the transient 

response of the non-linear system. It is useful to note that we should expect a significant 

difference between the non-linear system and our linear approximation outside of the 
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steady, level flight region because we stray more from the reference condition used for 

the linearization. 

 

Figure 6.5 shows a similar locus for speed-only feedback. The trend is similar to that of 

Figure 6.4, except that the integral poles do not extend into the right-half-plane. While 

this region demonstrates greater stability, we should continue with an analysis of the non-

linear transient response. 

 

Figure 6.6 is a root locus plot for the steady, level flight region. We note similar trends as 

in Figure 6.4 and Figure 6.5: the lowest damping occurs on the back-side of the power 

curve and the highest phugoid frequencies occur at low weight and low altitude. 

However, inspection of the locus does show that the modal properties for the entire flight 

envelope do fall within the general guidelines set forth in Section 6.2.   
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Figure 6.4. The locus of closed loop phugoid poles in for altitude-rate-only feedback for the entire flight 

envelope of a DC-9 in the clean configuration 
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Figure 6.5. The locus of closed loop Phugoid poles for speed-only feedback for the entire flight envelope 

of a DC-9 in the clean configuration 
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Figure 6.6. The locus of closed loop Phugoid poles in the steady, level flight region for the entire flight 

envelope of a DC-9 in the clean configuration 
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Unlike the other Regions, the steady, level flight controller may use the back-side of the 

thrust curve. There are two PI (proportional/integral) compensators at work and therefore 

there are two integral poles. In some parts of the envelope the integral poles become 

complex. This is seen in the locus of points grouped closer to the imaginary axis. (See 

Figure 6.7 as well). This still is not a concern because the integrator poles remain within 

the acceptable guidelines for modal property selection.  

 

Finally, high lift devices are considered. If the aircraft can operate with a single set of 

gains when high lift devices are employed as well as during clean configuration, the 

number of required gains for the system can be cut by a factor of 5 (avoiding a different 

set of gains for each flap setting). To explore this possibility, the full flap case of the DC-

9 is considered. Figure 6.7 shows the locus of points within the flight envelope under the 

full flap condition. As can be seen, the majority of flight conditions remain acceptable. 

However, in some cases, the integral poles become complex and are much slower than 

the Phugoid poles. This can cause a problem at low speed in that the aircraft may not 

capture the desired airspeeds as crisply and cleanly as it does at higher speeds.  

 

This condition presents a bit of a dilemma. During most of the simulation development, it 

was assumed that low speed flight would require additional control laws and gains.  Now 

we can see that one set of gains can fly the aircraft through its entire flight envelope; 

however, performance could be diminished in the low speed range. Here is a classic 

trade-off between precision and simplicity.  
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Figure 6.7. The locus of closed loop Phugoid poles in the steady, level flight region for the entire flight 

envelope of a DC-9 with full flaps deployed 

 

A more sophisticated control law will fly the airplane more precisely; however, it would 

also require extra code, and more gains.  For right now, since performance is still 

reasonably good in the low speed range, the decision has been made to capitalize on this 

unexpected result to simplify the control system. However, future requirements for other 

aircraft types may require a more complex control system to address the needs of low 

speed flight.  
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7. The	Lateral	Directional	Control	Laws	
The lateral directional control laws are considerably simpler than the control laws 

required to fly the aircraft longitudinally. The reason for the added simplicity is that one 

of the governing differential equations, the roll equation, can be modeled with a linear 

approximation. This approximation is used for two reasons. The first reason is that an 

accurate model of the full nonlinear roll dynamics is not essential to the modeling of 

accurate trajectories. The second is that the roll response is so heavily augmented by the 

pilot or autopilot that the dynamics of turn rate capture is much more dependent on 

control inputs than the actual roll dynamics.  

 

The decision to approximate the speedy roll mode permits us to ease computational effort 

by selecting a half-second time step. Such a long time step is not adequate to capture the 

roll dynamics, though it is more than adequate to capture the slower phugoid dynamics. 

 

Because our roll mode is linear, we can close feedback loops analytically without 

requiring the same detail that is done with the longitudinal dynamics. The main loop 

closures for the turning dynamics were already closed analytically in Section 2 and 

imbedded directly into the open loop dynamics making the desired bank angle, φ
des

, the 

primary input to the roll equation.  

 

The four topics for discussion are: 

 

1. The bank angle capture algorithm 

2. The heading capture algorithm 

3. Using the Bank Angle Capture and Heading Capture Algorithms to execute a turn 

4. Deciding which way to turn 

7.1 The Bank Angle Capture Algorithm 

The bank angle capture algorithm is the major kernel of the lateral directional control 

law. Consider the discretized bank angle system derived in Section 2.14. In general, the 

lateral state at the (k+1)th time step is a function of the lateral state at the kth time step 

and the desired bank angle. 

 

 
1

des

k k

p p
φ

φ φ
+

   
= +   

   
A B  

 

The constant matrices, A and B, are functions of the modal properties (ζ,ωn) and the time 

interval.  
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Sometimes it is desirable to command a specific turn rate. Since the turn rate equation is 

very nearly a linear function of the roll angle, we simply choose to adjust our commanded 

bank angle rather than creating another feedback control loop to drive the system to a 

commanded turn rate. Calculating the required bank angle is done by rearranging 

equation (2.67).  

 

 

φ
ψ γ

d

am V C

L

a=
F
HG

I
KJ

−sin
�

1
     (7.57) 

7.2 The Heading Capture Algorithm 

The heading capture algorithm is designed to capture a specified heading. To capture a 

given heading, we feed back the desired heading to the bank angle using the control law 

shown in equation (7.58).  

 

φ ψ ψψd dk= −b g     (7.58) 

 

To predict the effect of this feedback control law, we must first add the heading equation 

to our state space model. Consider the linearized version of the turn rate equation which 

finds its way into our state matrix.  

 

0a aa a

LS LCd d

d d mV C mV C

φ φ

γ γ

ψ
φ

φ φ

 
= = ∆  

 

�
    (7.59) 

 

0
d

dp

ψ
=
�

       (7.60) 

 

If we assign our reference condition for the linearization to be φ = 0.0, then ∆φ = φ. 

Furthermore, if we note that for the bulk of the flight the lift equals the weight and the 

flight path angle is near zero, we can simplify equation (7.59) to equation (7.61).  

 

 
a

d g

d V

ψ
φ

φ
≅
�

      (7.61) 

 

Arranging the system of equations in state space we have equation (7.62). 
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   (7.62) 

 

When we close a proportional loop around the system with kψ as our feedback gain, as 

shown in Figure 7.1, we see that the new closed loop system is equation (7.63). There is 

an integral relationship between the heading and the roll angle so zero steady state error 

is achieved without the use of integral control. 

 

 
 

Figure 7.1. Block diagram for heading feedback 
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  (7.63) 

 

Further verifying that integral control is unnecessary, we see that the transfer function 

that characterizes the relationship between ψ and ψd, equation (7.64), has a DC gain of 1.  
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  (7.64) 

7.3 Using the Bank Angle Capture and Heading Capture Algorithms 

to Execute a Turn 

When turning, the heading capture algorithm cannot be used for large heading errors. The 

reason is that the heading capture algorithm will command a bank angle proportional to 

the heading error. If the heading error is large, the control law will command an 

unreasonably large bank angle such as 180 degrees. This bank angle would correspond to 

an inverted aircraft and certainly does not make the aircraft turn any faster. Therefore, the 

heading capture algorithm is used only when the heading error is less than 15 degrees. 

�x Ax Bu= +kψ

ψ d ψ
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For errors greater than 15 degrees, the bank angle control law is used to command a 

constant turn rate in the direction of minimizing the heading error. Nominally, a bank 

angle of 30 degrees is used. Consider the following simulation example. The simulation 

parameters are as follows: 

 

• Va = 300 ft/sec 

• Lp = -0.475 

• 
a

Lδ = 0.185 

• kp = 2.836 

• kφ = 2.756 

 

Although the ADM uses kψ = 1, this simulation uses the following feedback gain, which 

accounts for variations in airspeed.  

 

k
V

g

a
ψ = 0 005.      (7.65) 

 

We simulate a turn to the right from a heading of 0 degrees to a heading of 100 degrees 

as shown in the simulation results in Figure 7.2. Initially, the aircraft rolls to the right to 

achieve a bank angle of 30 degrees. The aircraft holds the bank angle and steadily turns 

toward a heading of 100 degrees. When the aircraft is within 15 degrees of the desired 

heading, the heading capture algorithm takes over and drives the remaining heading error 

to zero.   
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Figure 7.2. Simulation of Aircraft Executing a Turn 
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8. Lateral	Guidance	and	Navigation	
The TGF Simulator’s Lateral Guidance Manager breaks lateral instructions into a 

sequence of basic lateral maneuvers. These lateral maneuvers are described in this 

chapter along with descriptions of how they are flown using the lateral control laws 

already described.  

 

It is the intent of the Lateral Guidance and Navigation System to follow the concepts and 

terminology of FAA Area Navigation (RNAV) procedures. The source for most of the 

RNAV concepts and procedures in this section is the web version of the FAA 

Aeronautical Information Manual (Federal Aviation Administration, 2010). 

8.1 Route Legs and Waypoints 

Routes are basic lateral paths. For the TGF simulator, routes are defined in accordance 

with RNAV processes and procedures. These definitions are provided here so that we can 

define route navigation procedures in the subsequent sections. 

8.1.1 Path and Terminator Concept 

A leg type describes the desired path preceding a route node. Leg types are identified by 

a two-letter code that describes the path (e.g., heading, course, track, etc.) and the 

termination point (route node). The "path and terminator concept" states that every leg of 

a route has a termination point and a path type into that termination point. Route legs in 

the TGF simulator are defined in this same way. 

 

There are four leg types: direct-to-fix (DF), track-to-fix (TF), course-to-fix (CF), and 

radius-to-fix (RF). Only the TF leg type requires a preceding fix to define the path. 

 

 

Figure 8.1:  Fly-by and fly-over waypoints followed by track-to-fix legs (source:  FAA 

AIM) 
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8.1.2 Leg Terminators – Geometric Nodes of a Route 

Waypoints are geographic points on the surface of the Earth, defined by 

latitude/longitude coordinates. The TGF Simulator requires geographic representation of 

the leg termination points (route nodes), so waypoints are commonly used. In keeping 

with RNAV concepts, waypoints used as route nodes can be defined as "fly-over" or "fly-

by." Fly-by waypoints are used when an aircraft should begin a turn to the next course 

prior to reaching the waypoint separating the two route segments. Fly-over waypoints are 

used when the aircraft must fly over the point prior to starting a turn. Fly-over and fly-by 

waypoints are illustrated in Figure 8.1. 

8.1.3 Direct-To-Fix Leg 

A Direct-to-fix (DF) leg type is the direct path from the aircraft's current position to the 

leg termination point (route node), regardless of course or track (see Figure 8.2). It is not 

a straight line or a geographically fixed path, but includes the path of the aircraft's turn 

towards the fix. The actual path flown will vary with aircraft type and speed. The path is 

defined by the aircraft’s bearing to the termination fix. 

 

 

Figure 8.2:  Fly-over waypoint followed by direct-to-fix leg (source:  FAA AIM) 

8.1.4 Track-To-Fix Guidance 

A Track-to-fix (TF) leg type is defined as the constant course path (i.e., rhumb line) to 

the route node from a preceding route node. For this reason, track-to-fix legs are 

sometimes called point-to-point legs. The preceding route node is typically the 

termination fix of the previous leg. With the beginning and ending nodes of the track-to-

fix leg defined, it is easy to calculate the rhumb line track (see Section 8.5), which is 

followed using Ground Track Guidance. Figure 8.1 illustrates a track-to-fix leg. 

8.1.5 Course-To-Fix Guidance 

A Course-to-fix (CF) leg type is defined as the constant course path (i.e., rhumb line) to 

the route node along the specified course (or heading). A course is assumed to be a 

magnetic course, unless otherwise specified. Course-to-fix and track-to-fix legs are 

similar in that they both define rhumb lines. The difference is that in a course-to-fix leg, 
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the rhumb line is defined by the termination fix (route node) and the specified course, and 

in a track-to-fix leg, the rhumb line is defined its end points. In both cases, the rhumb line 

is followed using Ground Track Guidance. 

 

 

Figure 8.3:  Course-to-fix leg showing the rhumb line and the aircraft's navigation to it 

(source:  FAA AIM) 

8.1.6 Radius-To-Fix Guidance 

A Radius-to-fix (RF) leg is defined as a constant radius circular path around a defined 

turn center that terminates at a fix. In addition to the termination fix, the RF definition 

must include the turn center point and the turn direction (i.e., right turn or left turn). In 

the TGF Simulator, the start point of the RF leg is not defined so that any RF leg defines 

a complete circle. The aircraft navigates to the circular path and moves in the direction 

specified. The end condition for the RF leg is defined by the ending azimuth (regardless 

of tracking error), which is determined from the termination fix and the turn center. The 

circular path is a geometric path over the earth and is followed using Ground Track 

Guidance and Bank Angle Capture guidance. A radius-to-fix leg is illustrated in Figure 

8.4. The parameters of a radius-to-fix leg are illustrated in Figure 8.9. 

 

 

Figure 8.4:  Radius-to-fix leg (source: FAA AIM) 
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8.2 Lateral Guidance 

The purpose of the lateral guidance system is to steer the aircraft to follow routes or other 

lateral paths. There are three basic lateral maneuvers, which are used in combination to 

achieve lateral guidance. These are: 

 

• Track a Geographic path 

• Follow a Course Law 

• Transition 

 

Every lateral maneuver in the TGF Simulator is made up of these three basic maneuvers. 

The intent of this section is to describe these three basic maneuvers in terms of the two 

basic lateral control laws (heading control and bank angle control) described in Chapter 

7. Once this description is completed, we will have a complete mapping of any lateral 

maneuver to the basic control laws of the simulator.  

8.2.1 Tracking a Geographic Path 

In this type of maneuver, an aircraft is intending to fly a specific geographic path over the 

surface of the earth. Currently, the TGF simulator is capable of navigating two types of 

geographic paths: circular arcs, and rhumb lines. The simulator must compare the 

aircraft’s position on the surface of the earth to the desired geographic path and apply 

lateral control inputs to correct any lateral errors. This is accomplished using ground 

track guidance. The end condition of a Track Geographic Path maneuver is triggered by a 

distance from (or, capture halo around) the path’s termination fix. For fly-by waypoints, 

this distance is adjusted to allow for the transition (described below). 

 

The ground track guidance algorithm is the basic guidance algorithm used for navigating 

geographic paths (routes and fixes). These paths are translated into a ground track 

azimuth as a function of some independent variable and then tracked. 

 

The ground track azimuth is the angle between the aircraft’s ground track and true North. 

Under a zero wind condition, the ground track azimuth is the same as the aircraft’s 

heading. In the presence of wind, the ground track azimuth will differ from the aircraft 

heading as illustrated in Figure 8.5. To navigate a geographic path, the aircraft must 

follow a given ground track azimuth rather than a specific heading; yet the lateral control 

system is designed only to turn to a desired heading. The lateral guidance must bias its 

heading commands to the lateral control system with a correction factor that accounts for 

winds. To accommodate this requirement, the lateral guidance measures the difference 

between the heading and the ground track azimuth, which we denote as ∆ψ. Our tracking 

algorithm makes uses the following nomenclature: 
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• ψ: The aircraft’s heading, in degrees.
2
 

• ψGT: The aircraft’s ground track azimuth, in degrees. 

• δψw: The wind bias. 

• ψd: The desired heading. 

• 
dGTψ : The desired ground track azimuth. 
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Figure 8.5.  Illustration of the difference between ground track and heading 

 

We define the wind bias as the difference between the aircraft’s ground track azimuth and 

its heading. 

 

 δψw ≡ ψGT - ψ (12.1) 

 

The aircraft’s ground track azimuth and heading are available from the aircraft dynamics. 

The wind bias, δψw, is then used to adjust the desired ground track so that the aircraft will 

track properly. The result is the desired heading.   

 

 
dd GT w

ψ ψ δψ= −  (12.2) 

 

Equation (3.212) is not intended as an accurate representation of the vector algebra 

graphically depicted in Figure 8.5; it merely shows the use of the wind bias as a 

correction factor. Its simplicity does not compromise its intent, which is to capture the 

desired ground track azimuth. 

 

                                                 
2
 Analysis of the wind bias requires a comparison of the azimuth of the aircraft’s velocity vector, ψa, with 

the ground track azimuth, ψGT; but in Chapter 2, we stated the assumption that the aircraft is always 

trimmed for coordinated flight; i.e., the sideslip is always zero. This means that the azimuth of the aircraft’s 

velocity vector, ψa, is coincident with the aircraft’s heading, ψ. Therefore, for our purposes, the analysis is 

equally accurate in comparing ψ and ψGT. 
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8.2.1.1 Tracking a Rhumb Line 

Track-to-fix and course-to-fix legs are composed of rhumb lines. When tracking a rhumb 

line, the tracking algorithm commands the ground track of the aircraft based on: 

 

• the aircraft’s lateral distance from the rhumb line, 

• the rhumb line's bearing, and 

• the aircraft’s radius of turn. 

 

This is illustrated in Figure 8.6. The intercept angle for the given segment is a function of 

how far the aircraft is laterally from the segment.   
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Figure 8.6.  Illustration of the aircraft in route following mode 

The intercept reaches a maximum of 45 degrees when the aircraft is one-half a turn radius 

away from the segment.  The intercept angle is bounded at 45 degrees. Equations (12.3) 

and (12.4) are used to determine the aircraft’s desired ground track. First, ψ∆  is 

calculated using Equation (12.3).  If the result has a magnitude greater than 45 degrees, 

the answer is bounded at 45 degrees using Equation (12.4). The ratio δ
δ  is used to 

preserve the sign of the original value. Note that the lateral distance term,δ , maintains a 

sign convention of  positive values on the right side of a segment and a negative value on 

the left side of the segment. This solution is adapted from the original System Segment 

Specification (Federal Aviation Administration, 1993). 
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dGT rψ ψ ψ= − ∆      (12.5) 

 

The terms are defined as follows: 

 

• δ :       The aircraft’s lateral distance from the capture segment  (nm) 

• rψ :     The capture segment’s bearing.  (degrees) 

• tr :       The aircraft’s turn radius.  (nm) 

• 
dGTψ :  The aircraft’s desired ground track  (degrees) 

• FTEδψ :  The heading bias from flight technical error (degrees) 

 

As with all other heading commands, the term 
dGTψ  needs to be adjusted to keep values 

within the 0 - 360 degree range. The logic for this operation is shown in Figure 8.7. 

 

The flight technical error (Chapter 11) is sent to the heading-based course guidance in the 

form of a lateral offset, denoted as FTErδ . The lateral error offset is then related to a 

heading bias using Equation (12.6). 

 

90
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δψ δ=       (12.6) 

 

ψ GTd
> 360 ψ GTd

< 0

ψ ψGT GTd d
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Figure 8.7. Logic for insuring desired ground track is within proper boundaries 

 

The terms in the equation are defined as follows: 

 

• FTEδψ :  The heading bias created from flight technical error (degrees).   

• tr :     The turn radius for the aircraft at the current speed (nm). 
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• FTErδ :    The lateral offset from flight technical error (nm). 

 

The flight technical error conversion from lateral distance to a heading bias mimics 

Equation (12.3) in form and causes the course guidance algorithm to produce the lateral 

offset error of FTErδ  in the flight path.   
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Figure 8.8.  Illustration of distance calculation geometry 

8.2.1.1.1 Determining Lateral Distance from a Rhumb Line 

The aircraft’s lateral distance from a rhumb line is calculated using vector operations. 

The dot product is taken of the position vector from the aircraft’s location to the leading 

fix of the segment and a unit vector normal to the vector describing the segment itself. 

The expression is best represented mathematically in Equation (12.7) and Figure 8.8. To 

insure that the desired ground track for segment capture is correct, it is necessary for δ  to 

be negative when on the left side of the segment and positive on the right side of the 

segment. 

 

 lf snδ = ⋅r ˆ  (12.7) 

 

The unit normal is represented in Equation (12.8). 

 

 ˆ ˆ ˆy x
s s

s s s

s s

R R
n x y= −

R R
 (12.8) 

 

The terms in the equations are defined as follows: 

• δ:  The lateral distance from the segment 

• rlf:  A vector from the aircraft’s position to the leading fix 
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• sn̂ :  A unit vector normal to the segment 

• Rs:  A vector representing the segment 

8.2.1.2 Tracking a Circular Arc 

When flying a radius-to-fix leg, an aircraft is tracking a circular arc path on the surface of 

the Earth. Tracking to this circular arc is performed similarly to the rhumb line tracking 

and the same approach is used here. Figure 8.6 applies equally to this discussion.  

 

Because the aircraft is following a constant radius turn, it is assumed to be in a constant 

bank angle turn. While this assumption is a gross representation of the turn, the lateral 

correction term will handle any discrepancies. 

 

The constant bank turn is followed using the Bank Angle Capture algorithm described 

earlier. The nominal bank angle for the turn, φt, is given by the parameters of the radius-

to-fix leg. The heading adjustment, ∆ψ, is calculated as with rhumb line tracking, using 

equations (12.3) and (12.4). The heading adjustment is then converted to a bank angle 

adjustment, using a heading gain, kψ, similar to that defined in equation (7.8). The 

nominal value for the heading gain is kψ= 1. 

 

 kψφ ψ∆ = ∆  (12.9) 

 

Then, similar to equation (12.5), the desired bank angle is given by… 

 

 
d t

φ φ φ= − ∆  (12.10) 

 

8.2.1.2.1 Determining Lateral Distance from a Circular Arc Route Leg 

For the purposes of correcting the cross-track error when tracking a geographic circular 

path (i.e., a radius-to-fix leg), an aircraft’s lateral distance, δ, from a circular arc is here 

defined as the difference between the arc's radius and the aircraft's distance from the turn 

center, as illustrated in Figure 8.9. To maintain the sign convention that lateral distance is 

positive when to the right of the path, a step function is defined here that is based on the 

turn direction specified in the RF definition. 
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The lateral distance is then, 

 



 

-170- 

 ( )TD tf r dδ = −  (12.12) 

 

where rt and d are defined as always positive. As stated earlier, circular paths are tracked 

using the Bank Angle Capture algorithm, which requires a desired bank angle. Using 

equation (12.12), the heading correction, ∆ψ, is calculated using equations (12.3) and 

(12.4). The bank angle correction is calculated using equation (12.9), and the desired 

bank angle is calculated using equation (12.10). 

 

 

Figure 8.9:  Parameters of a Right Turn Radius-To-Fix Leg 

8.2.2 Following a Course Law 

In this type of maneuver, an aircraft is intending to fly a specific compass course 

(heading) law. The course law may be constant (e.g., the aircraft is trying to maintain a 

magnetic heading of 190°) or a function of some independent variable, like position (e.g., 

a direct-to-fix leg is a course law that matches the aircraft’s bearing to the fix, which is a 

function of the aircraft’s position). The end condition of a course law may be time-based 

or position-based. A course law maneuver makes use of the Heading or Bank Angle 

control laws. 

 

As described in Chapter 7, the lateral guidance manager must decide which direction to 

turn and whether or not bank angle control is needed to bring the heading error into a 

region in which linear heading capture can be used. 
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The strategy for deciding whether to use bank angle capture in the heading guidance is 

worth repeating. The heading capture algorithm is used only when the heading error is 

less than 15 degrees. For errors greater than 15 degrees, the bank angle control law is 

used to command a banked turn in the direction of minimizing the heading error. 

8.2.2.1 Deciding Which Way to Turn 

The TGF simulator’s user interface allows for commanded left and right turns. Often, 

however the aircraft is left to make that decision itself. This may be the case for constant 

heading instructions and for direct-to-fix instructions. In this case, the aircraft must 

choose which direction of turn is the shortest. Either a left turn or a right turn will work, 

but one turn is shorter. The dilemma is illustrated in Figure 8.10. To the human, it is 

obvious that a right turn is appropriate for the situation; however, the logic required to 

make the autopilot come to the same conclusion is not trivial. The following logic 

determines the magnitude and the sign of the heading error, referred to as e5 in the 

simulation code. The first task is to determine the magnitude of the heading errors to the 

left and right, symbolically represented as eleft_turn and eright_turn. 

 

360
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Figure 8.10.  An illustration of the dilemma of whether to make a right of left turn to a heading 

 

if ψd > ψ 

 eright_turn = (ψd - ψ) 

 eleft_turn = (ψd - ψ) - 360 

 

if ψd < ψ 
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 eright_turn = (ψd - ψ) + 360 

 eleft_turn = (ψd - ψ) 

 

Next, the absolute value of eleft_turn and eright_turn are compared to determine which is 

smaller. The actual heading error, e5, is set equal to the smaller of these two errors. It is 

convenient to use the convention that turning errors to the left are always negative and 

turning errors to the right are always positive. This corresponds nicely to the bank angle 

convention where banks to the right are considered positive and banks to the left are 

negative. Therefore, there is no need to adjust the previously developed control laws to 

make sure that the aircraft turns in the desired direction when commanded.  

8.2.2.2 Capturing a Heading when the Direction of Turn is Specified 

The introduction of the left or right turn variability adds complexity to the system. When 

the aircraft is constrained to turn in only one direction, it will likely overshoot slightly 

and instead of turning back to the heading, it will continue turning in the specified 

direction for another 360 degrees. There needs to be a distinction made for the initial 

capture of the heading. Figure 8.10 shows the algorithm for determining whether or not a 

heading has been captured. Essentially, the aircraft turns in the specified direction until 

the heading error is within 5°, at which point the simulator uses the logic of the previous 

section to determine the turn direction on its own. The term e5 is the error in heading.  
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Figure 8.11.  Algorithm for capturing a heading  
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8.2.2.3 Direct-To-Fix Guidance 

Direct-to-fix guidance is used in several different super-maneuvers, including Fix 

Capture, Route Following, and Hold Maneuvers. To fly a direct-to-fix leg, it is necessary 

to know the aircraft's range and bearing to the fix. (Algorithms for calculating range and 

bearing to a fix are discussed later.) Once the bearing to the fix is known, the Course Law 

logic is used to turn the aircraft to that bearing.  This control strategy is effective as long 

as the aircraft is sufficiently far away from the fix. This geometry is illustrated in Figure 

8.12.   
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Figure 8.12.  An aircraft turning to a fix 

 

 

 

Figure 8.13.  Guidance algorithm for Direct-to-fix leg with a fly-over termination point 
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The bearing to a fix changes constantly as the aircraft moves, except when it is flying 

directly at the fix. By using the aircraft’s bearing to the fix as its desired heading, the 

aircraft is guaranteed to be flying to that fix. When the aircraft is a within a preset capture 

limit distance (nominally, 0.1 nm) of the fix, the fix is considered captured.  Figure 8.13 

illustrates the direct-to-fix algorithm.  

 

When the capture "halo" around the fix is entirely within the turning circle of the aircraft, 

as illustrated in Figure 8.14, the aircraft cannot capture the fix. The simulation should 

perform a check to see if the capture halo is within the turning circle of the aircraft and, if 

so, to consider the fix captured. 

 

 

Figure 8.14 Aircraft Cannot Enter the Capture Halo 

8.2.3 Transition 

A transition maneuver is used to blend lateral maneuvers. The intent of the transition is to 

blend a lateral maneuver onto a subsequent geographic path. But the indicator used by the 

TGF Simulator for determining the need for a blended transition is the fly-by waypoint, 

not the subsequent path; and there is no requirement that the maneuver succeeding a fly-

by waypoint is a geographic path. Nor is there a requirement that the fly-by waypoint lie 

on the geographic path defined in the succeeding maneuver. For this reason, the transition 

following a maneuver with a fly-by waypoint is defined by that same maneuver, and not 

by the subsequent geographic path that is to be blended. The unfortunate consequence of 

this approach is that it is possible to define transitions that do not actually blend the 

subsequent maneuver; however, this will not create lateral guidance anomalies, as the 
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lateral guidance system will simply correct to the current path, regardless of the size of 

the path error. Therefore, it is left to the route designer to ensure lateral path continuity. 

 

There is one exception in which a transition is not indicated by a fly-by waypoint, and 

that is the constant course merge to route maneuver. This is a constant course law with an 

end condition defined by proximity to a route. In this case, the transition is defined by a 

subsequent geographic path. The Route Segment Selection algorithm is used to determine 

the route segment to be intercepted. As the aircraft approaches the route, the selected 

segment may change, so the selection algorithm repeats throughout the maneuver. 

 

 

Figure 8.15. Illustration of segment transition distance 

8.2.3.1 Fly-By Waypoint Transitions 

A fly-by waypoint (as illustrated in Figure 8.1) indicates that the aircraft is to blend its 

path into a subsequent lateral maneuver. To accomplish this, the TGF guidance manager 

creates a "transition" phase during which the aircraft uses the bank angle capture 

algorithm to fly a constant bank angle (nominally 30°) until the aircraft is within an 

acceptable heading error (nominally, 5°) of the initial heading of the subsequent lateral 

maneuver.
3
 This establishes the end condition of the transition phase. To accomplish this 

transition, the guidance manager needs to determine the point along the current segment 

at which the transition should begin. This point is defined by the distance from the 

                                                 
3
 If the initial heading of the subsequent maneuver is not defined, it is taken as the rhumb line bearing 

between the consecutive termination fixes. If a radius-to-fix leg is involved in the transition (preceding or 

trailing), the course vector at the beginning and terminating fixes should be used in determining the course 

difference, a. 

Segment

Segment transition

distance
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termination fix. This distance is termed the segment transition distance and is illustrated 

by Figure 8.15. The magnitude of this distance is affected by the turning radius of the 

aircraft and hence the speed of the aircraft. 

 

The transition is typically a constant bank angle law and its end condition is typically 

heading-based (e.g., a 30° bank until attaining the initial heading of the subsequent 

geographic path). A transition maneuver makes use of the Bank Angle control law. 

 

We encounter a dilemma in choosing a bank angle for transition maneuvers. Standard 

procedures (Federal Aviation Administration, 2010) call for a 3 degrees/second turn, but 

experience and track data show that such turns are much sharper than is common. 

Turning with a 30 degree bank angle is not unrealistic but such turns are sharper than 

most turns seen in radar track data. The TGF has seen better correlation with track data 

when using 17 degree turns. Perhaps the choice of bank angle is better correlated to 

aircraft type or altitude of the turn. Currently, the TGF uses a constant default desired 

bank angle (nominally, 30°), but research may be necessary to determine a more suitable 

law. 

 

 
 

Figure 8.16. The geometry of segments that intersect at an obtuse angle 
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Figure 8.17. Geometric representation of segments adjoined at an acute angle 

 

To determine the segment transition distance, two different drawings of the scenario are 

presented in Figure 8.16 and Figure 8.17. Figure 8.16 shows the more common case 

where segments intersect at obtuse angles. Figure 8.17 shows the less common case 

where segments intersect at acute angles. It will be shown that the equation for the 

segment transition distance is the same in both cases. The course (or heading) difference 

between the segments, ∆ψ, can be calculated using the definition of the dot product of the 

course vectors and the angle, a (shown in Figure 8.17 but omitted from Figure 8.16), 

between them. The angles a and ∆ψ are supplementary angles (ie, they sum to 180°) 

 

The segment transition distance, offsetl , is calculated by observing in Figure 8.16 that two 

isosceles triangles are formed creating a ‘kite’ like pattern. We can then bisect the angle 

and form two right triangles. Trigonometry can then be used to calculate the segment 

transition distance based on the difference of the headings of the two segments  and the 

turn radius, rt, of the aircraft. A lag factor, k, (suggested value, 1.3) is added to allow for a 

margin of error since turn dynamics are not instantaneous. The equation is valid for the 

acute angle case of Figure 8.17 as well.  

 

2
offset tl kr

ψ∆ =  
 

tan      (12.13) 
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8.2.3.2 Merge to Route Transitions 

When an aircraft is following a constant course law to intercept a route, it must gauge 

when it should start to turn to merge cleanly onto the route. Generally, the distance that is 

required is a function of the aircraft’s speed and the intercept angle that the aircraft has 

with the segment. It is a very similar calculation to that used for fly-by waypoint 

transitions. Figure 8.18 illustrates the geometry of an aircraft merging onto a segment 

 

The algorithm requires the aircraft’s true airspeed and heading and a vector describing 

the segment.  

• VG:   Aircraft’s ground speed 

• ψ:   Aircraft’s heading over the ground 

• Rs:  A vector describing a segment.  

 

First, a vector, V, representing the aircraft’s velocity is created from the aircraft’s speed 

and heading. We can see from the geometry in Figure 8.18, that the problem is similar to 

the fly-by waypoint transition problem. We can also see that the distance at which the 

aircraft should turn, lturn, is the projection of loffset onto a line normal to the segment. 

Modifying equation (3.214), we get… 

 

 ( )
2

turn tl kr
ψ

ψ
∆ = ∆ 
 

tan sin  (12.14) 

 

Using trigonometric identities, equation (12.14) can be simplified to equation (12.15). 
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Figure 8.18.  Illustration of geometry associated with an aircraft merging onto a segment when aircraft is 

heading in the direction of the segment 
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Figure 8.19.  An aircraft merging onto a segment which is pointed in a direction opposite of the aircraft's 

current velocity 

 ( )1turn tl kr ψ= − ∆cos  (12.15) 

 

When the aircraft is tending to head in the direction opposite the direction of the segment, 

more distance is needed to turn because the aircraft must completely change the direction 

of flight to fly along the segment. This case is illustrated in Figure 8.19. However, 

Equation (3.215) is still valid as can be verified from inspection of the geometry in Figure 

8.19. 

8.3 Lateral Guidance Manager 

The Lateral Guidance Manager creates a sequence of the basic lateral maneuvers detailed 

above based on what are best described as “super-maneuvers.” The Lateral Guidance 

Manager accepts the following super-maneuvers. 

 

• Route Following 

• Route Capture 

• Heading Capture 

• Hold 

• Aircraft Following 
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• Aircraft Grouping 

 

The Aircraft Following and Aircraft Grouping super-maneuvers are application-specific 

maneuvers and are not covered in this document. 
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Figure 8.20.  Logic for Automatic Route Capture Guidance 
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8.3.1 Route Following 

Based on the aircraft’s specified route, the Lateral Guidance Manager creates a sequence 

of maneuvers to guide the aircraft along that route. The most common route is a sequence 

of track-to-fix legs with fly-by waypoints. In accordance with the procedures of the 

preceding sections of this chapter, the Lateral Guidance Manager will create the rhumb 

lines defined by the legs and the transition maneuvers between them as well as the end 

conditions for each maneuver. 

8.3.2 Route Capture 

The Lateral Guidance Manager will define a path to the aircraft’s specified route based 

on one of three capture types:  Automatic, Direct, or Heading Intercept. It will also create 

the transition to the route, if necessary, and the maneuvers of the route itself. 

8.3.2.1 Automatic Route Capture 

For automatic route capture, the Lateral Guidance Manager must select a capture segment 

from the aircraft’s route, then create a point on that segment to target for the capture. The 

route capture then becomes identical to a Direct Route Capture. The algorithm is 

described in the flow diagram illustrated in Figure 8.20. The procedure used in automatic 

route capture guidance involves determining a capture segment, determining a dynamic 

fix, and leg transition.  

8.3.2.1.1 Selecting a Capture Segment 

There are three criteria that are used to determine the appropriate segment to capture. 

These criteria use three parameters: 

 

1. The Dot Products of the aircraft’s location relative to the leading and trailing fixes 

and the segment’s vector Rs. 

2. The lateral distance from the segment. 

3. The closest trailing fix. 

 

Criterion #1 is summarized as: 

 

If a segment’s position vector, when dotted with a position vector from the aircraft’s 

location to the leading fix, yields a positive value and if a segment’s position vector, 

when dotted with a position vector from the aircraft’s location to the trailing fix of the 

same segment, yields a negative value, then the aircraft should capture the segment. 
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Figure 8.21.  Scenario of an aircraft determining which segment to capture 

 

Consider the following scenario shown in Figure 8.21. There are three segments in the 

route and the aircraft must determine which segment to capture. To do this the position 

vectors r1 through r4 are determined. These vectors are then dotted with the position 

vectors of each segment. If the dot product between a position vector from the aircraft 

location to the leading fix of a segment and the segment position vector is positive, then 

the aircraft tends to be behind the leading fix of a segment. Likewise, if the dot product is 

negative, the aircraft will be ahead of the fix.  For a segment to be a good choice for 

capture, the aircraft should be behind the leading fix and in front of the trailing fix. In the 

scenario in Figure 8.21, we see that the dot products for the first segment are both 

negative.  Therefore the aircraft is in front of the first segment. For the second segment, 

the dot product to the trailing fix is negative while the dot product to the leading fix is 

positive. The second segment would therefore be an acceptable choice for capture.  

 

Looking at the third segment, both dot products are positive so the segment is in front of 

the aircraft. Initially, this test alone was thought to be sufficient to determine which 

segment should be captured; however, it is not. 

 

Consider the next case shown in Figure 8.22. When the required dot products are 

calculated, it is shown that both segments meet the requirements for capture. Therefore 

criterion #2 calculates the lateral distance from every segment deemed acceptable by 
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criterion #1. The closest segment is captured. In Figure 8.22, the first segment is chosen 

because it is the closest to the aircraft. 
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Figure 8.22. A scenario demonstrating the failure of criterion #1 
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Figure 8.23. Regions where both criterion #1 and criterion #2 fail 

 

These two criteria are not sufficient to handle all cases. Consider the cases where no 

segment is acceptable as defined by criterion #1. These cases are illustrated in Figure 

8.23. Criterion #1 will fail to yield any segment for capture if its dot product 
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requirements are not met. This often occurs when the aircraft is sufficiently behind or in 

front of the route as shown in regions A and C of Figure 8.23. There is also another 

“dead” region where two segments meet as shown in region B. If an aircraft is in this 

region, criterion #1 will not find a segment. In this case, criterion #3 is used. Criterion #3 

checks the aircraft’s distance from every segment’s trailing fix. It then chooses to capture 

the segment that is associated with the closest trailing fix. Figure 8.24 illustrates the 

segment determination logic. 
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Figure 8.24.  Flow chart detailing segment determination logic 

8.3.2.1.2 The Dynamic Fix  

The dynamic fix is an arbitrary fix that is created by the system at a convenient location 

along the selected capture segment to be used in a direct-to-fix maneuver. This is a more 

robust algorithm than an arbitrary intercept approach.  For instance, once the capture 

segment is determined, the aircraft could be given an intercept heading of 45 degrees and 

intercept the segment. However, this method has some inherent limitations. First, the 

aircraft would always intercept using 45 degrees regardless of how far the aircraft was 

away from the segment. An aircraft far away from the capture segment might pass the 

segment before ever capturing it. This situation is illustrated in Figure 8.25. 
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Figure 8.25.  Illustration of aircraft using a 45 degree intercept 

 

To avoid the problem of aircraft overshooting capture segments, a dynamic fix is placed 

on the segment to be captured, and the aircraft is commanded to fly toward the dynamic 

fix using direct-to-fix guidance. This situation is illustrated in Figure 8.26. In this case the 

further aircraft naturally uses a larger intercept angle. This system insures that the proper 

segment is captured and also provides some apparent variety in intercept angles so that all 

aircraft do not appear to behave the same. To calculate a dynamic fix, first consider the 

drawing in Figure 8.27.  
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Figure 8.26.  Illustration of two aircraft capturing a segment using a dynamic fix 
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Figure 8.27. Determining an offset fix (dynamic fix) location 

 

The distance, d, left to travel on a given segment is determined by dotting r1, the position 

vector from the aircraft to the leading fix, with a unit vector in the direction of the 

segment, sr̂ . The dynamic fix distance from the leading fix, doffset, is somewhat arbitrarily 

chosen to be three turn radii less than the distance d. The turn radius of the aircraft is 

notated, rt.  
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The three-turn-radius distance was chosen to insure that the aircraft, regardless of its 

initial orientation or position, can capture the dynamic fix while still maintaining the 

proper general direction along the route. Generally, two turn radii would be sufficient, 

providing the aircraft does not speed up during the maneuver. However, three turn radii 

are used as a factor of safety just in case the aircraft increases its speed and hence its turn 

radius during the maneuver.  

 

1 sd r= ⋅r ˆ       (12.16)  

  

3offset td d r= −       (12.17) 

 

We can create a vector, Roffset, describing the location of the dynamic fix where sx̂  is a 

unit vector pointing true North and sŷ  is a unit vector pointing true East.  

 

offset offset r s offset r sd x d yψ ψ= − −R ˆ ˆcos sin    (12.18) 

 

However, to use the direct-to-fix guidance, the fix must be represented in terms of a 

latitude and a longitude. We can approximate the latitude of the fix by converting the sx̂  

component of the Roffset vector to a degree value as done in Equation (12.19). Similarly, 

the longitude can be calculated in Equation (12.20).  
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8.3.2.2 Direct Route Capture 

In a Direct Route Capture, the capture point is known. The Lateral Guidance Manager 

builds a direct-to-fix maneuver to the capture point, a transition to the route, and the 

maneuvers of the route itself. 

8.3.2.3 Heading intercept Route Capture 

For a Heading Intercept Route Capture, the Lateral Guidance Manager builds a heading 

maneuver with a position-based end condition. This maneuver must constantly monitor 

the aircraft’s position relative to the route and evaluate the selection of capture segment 

and the coincident transition maneuver. The Manager attaches the transition maneuver 

and the maneuvers of the route itself. It should be noted that the algorithm has no control 

over the initial heading, and so there is no guarantee that the course will intercept the 
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route. The Manager will, however, provide a warning if the aircraft is unlikely to 

intercept the route.  Figure 8.28 shows the basic algorithm for the guidance law. It should 

be noted that even though the aircraft is being vectored, it is necessary to determine the 

capture segment so that the aircraft knows when to merge onto the route.  

 

Determine 

capture segment

Is it time

 to turn onto 

the route?

Yes

No

Terminate route capture with 

fixed heading guidance and activate

Route Following Guidance

Continue to follow

commanded heading

   

Figure 8.28.  Route capture with fixed heading guidance 

8.3.2.3.1 Determining Whether the Heading will Intercept a Route 

While the algorithm has no control of the aircraft’s initial heading, the algorithm will 

provide a warning if the heading chosen by the user is unlikely to intercept the given 

route. Basically, the algorithm measures whether or not the intercept angle crosses a 

segment and is related to the route following algorithm. The intercept angle ψt is 

calculated using Equation (3.216). 

ψt = ψr - ψd      (12.21) 

 

The terms are as follows: 

 

• ψt:  The intercept angle that the aircraft heading makes with the segment 

• ψr:  The bearing of the segment 

• ψd:  The desired heading 

 

The resulting number is used in the logic presented in Figure 8.29 
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8.3.3 Hold 

The Hold super-maneuver is used by the Lateral Guidance Manager when a hold is 

commanded or when the fix of a direct-to-fix command is not part of the aircraft’s 

specified route. Holds in the TGF simulator are constructed in accordance with holding 

procedures in the AIM. The Lateral Guidance Manager builds a direct-to-fix maneuver 

followed by a hold entry (direct entry, parallel entry, or teardrop entry) and then a 

sequence of course-to-fix and radial legs. The reader is referred to the AIM for further 

information 

ψ ψ ψt r d= −

ψ t < −180 ψ ψt t= + 360

ψ t > 180 ψ ψt t= − 360

δ < 0

ψ t > 0
&

δ > 0

ψ t < 0

&or

Aircraft will likely NOT capture segment

Aircraft will likely 

capture segment

No

Yes

No

Yes

No

Yes

 
 

Figure 8.29.  Logic for determining whether or not a heading will intercept a segment 

8.3.4 Heading Capture 

The Heading super-maneuver is simply a constant heading course law. 

8.4 Basic Algorithms Required for Complete Functionality 

To make the guidance system operate properly, some lower level functions are required. 

These functions are: 

 

• Calculating the aircraft’s turn radius 

• Determining the lateral distance to a segment 

• Determining the distance to go along a segment 

• Determining the Rhumb line bearing and distance to a fix 
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8.4.1 Calculating the Aircraft Turn Radius 

To calculate an aircraft’s turn radius, rt, a standard equation is used from Anderson 

(1989), Equation (12.22), where V is the aircraft’s speed in the surface coordinate system, 

g is the gravitational acceleration, and n is the aircraft load factor.  

 
2

2 1
t

V
r

g n
=

−
      (12.22) 

 

The load factor for the aircraft is calculated by considering Equation (12.23) where L is 

the lift of the aircraft, φ is the bank angle, and W is the weight of the aircraft. In the 

simulation, we will assume that the aircraft always will provide enough lift to maintain 

level flight which is implied by the equality of Equation (12.23). 

 

L cosφ = W     (12.23) 

 

The load factor of an aircraft is defined as the lift over the weight. Assuming enough lift 

is provided to maintain level flight, the load factor can be determined as an exclusive 

function of bank angle. 

 

1L L
n

W L φ φ
= = =

cos cos
    (12.24) 

 

Plugging equation (12.24) into equation (12.22), we get 

 

 
2

tan
t

V
r

g φ
=  (12.25) 

8.4.2 Determining Distance to go Along a Segment 

Using the same nomenclature and geometry presented in Figure 8.8, the distance left to 

travel along the segment, d, can be calculated using Equation (12.26). 

 

s
lf

s

d = ⋅
R

r
R

     (12.26) 

8.4.3 Rhumb Line Bearing  

The rhumb line is a line of constant course, or heading. The distance between the two 

fixes using the rhumb line can be much greater than a great circle arc if the fixes are far 

apart.  
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For a spherical earth, a rhumb line is a straight line drawn between the two points on a 

Mercator projection of the earth’s surface. The mercator projection separately maps 

latitude and longitude to a planar surface. The rhumb line is then the hypotenuse of the 

triangle formed by the projection of the latitude change and longitude change onto that 

planar surface. Our derived equations should be consistent with the Mercator 

transformation equations of Clarke (1995). 
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Figure 8.30. Cylindrical mapping of spherical Earth model.  Shown are two fixes and the constant 

heading route between the fixes. 
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Figure 8.31  Geometry relating latitude, longitude, and bearing on a spherical earth 

 

Referring to Figure 8.31, the changes in latitude and longitude along a rhumb line on a 

spherical earth are given by, 
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which can be rewritten as, 
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Upon integrating, we get, 
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 (12.28) 

 

 

Solving for the true heading, we get, 

 

 
( )2 1

2 1

tan

ln tan ln tan
4 2 4 2

l l
ψ

λ λπ π

−
=
    

+ − +    
    

 

 

This is consistent with the equations for the equatorial Mercator projection as presented 

in Clarke (1995).  

 

The longitudes must be analyzed so that the shorter path around the world is chosen. The 

following algorithm will normalize the longitude change for our purposes. 
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And the true heading equation becomes, 
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 (12.30) 

 

Because the arctangent has a range (-90°,90°) and we want a heading in the range 

(0°,360°), we need to be careful about how we solve this equation. We, therefore, 

develop the 360° arctangent function. 

 

 2 1
360arctan ln tan ln tan ,

4 2 4 2
l

λ λπ π
ψ

     
= + − + ∆           

 (12.31) 

 

8.4.3.1 360° Arctangent Function 

In this section, we develop an algorithm for the arctangent of a ratio of Cartesian 

coordinates in the range (0°,360°). Because the ratio is of the ordinate to the abscissa, we 

can adapt the range of the arctangent function per the quadrant of the coordinate pair. 

 

Function θ = arctan360(δabscissa ,δordinate ) 

 

 if δabscissa � 0 and δordinate � 0 
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 else 
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	arctan  

 end 
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8.4.4 Rhumb Line Distance 

 

Once again referring to Figure 8.31, the incremental distance along a rhumb line on a 

spherical earth is given by, 
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which integrates to, 
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Absolute value is used because we want a positive distance. Equation (12.32) does not 

apply for east-west rhumb lines. For these cases we use an alternate relation, also 

obtained from the geometry of Figure 8.31. 

 

 cos
EW e

ds r dlλ=  (12.33) 

 

Since the latitude is constant, this integrates to, 

 

 cosEW es r lλ= ∆  (12.34) 

 

The question arises as to what earth radius to use in the calculations. A good 

approximation to the spherical earth radius is to use the local radius of the first point in 

the WGS-84 earth model, which is given by using equations (2.107) and (2.108). 

 

8.4.5 Creating Vectors Representing Segments 

There is a need to represent segments as vectors. To create a vector, a magnitude and 

bearing are required. Generally, the rhumb line information is used. A segment’s bearing 

is the rhumb line bearing between the two endpoint fixes that make up the segment, and 

the segment’s length is the rhumb line distance between the two fixes. The vector 

components are represented in the surface frame as shown in Equation (12.35) 

 

s s s s s s ss x s yψ ψ= +R ˆ ˆcos sin      (12.35) 
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The nomenclature is defined as follows: 

 

• Rs:      The vector representing the segment 

• ss:      The rhumb line distance of the segment 

• ψs:     The rhumb line bearing between the trailing and leading fixes of the segment 

• , s sx yˆ ˆ : Unit vectors representing the x, y components of the surface frame. 
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9. Navigation	Error	Modeling	
The purpose of navigation error modeling is to model the variances which occur in 

aircraft flight paths as a result of imperfect information. Three different navigation 

systems are modeled: These are: 

 

• VOR/DME navigation 

• GPS navigation 

• ILS navigation 

 

The two navigation types generally used for en route types of operation are VOR/DME 

and GPS navigation. The ILS model is used only for approach to landing. All of the 

navigation error models perform similarly in that they create a perturbed estimate of the 

aircraft’s location for the guidance system to use as an input. Therefore, the navigation 

error models all return a latitude-longitude pair which represents the aircraft’s position as 

determined by imperfect navigation.  

9.1 VOR/DME Navigation 

Aircraft which use VOR/DME navigation are relying on a network of ground based VOR 

transmitters for bearing information and DME for distance information. The aircraft use 

range and bearing information from VOR/DME stations of known position to estimate 

the position of the aircraft. However, pure VOR/DME navigation puts more constraints 

on the problem in that aircraft usually always fly either to or from a VOR/DME station 

along a predetermined radial rather than using some area navigation (RNAV) technique. 

Therefore, not only does the aircraft’s position need to be calculated, but also a technique 

to determine which VOR/DME is most appropriate for navigation must also be 

determined.   

 

The process of VOR/DME navigation can be broken into two parts. These are: 

• Determining the aircraft position from a given VOR/DME station 

• Determining which VOR/DME station is best used for navigation 

9.1.1 Determining Aircraft Position from a VOR/DME Station  

The VOR transmitters send a line-of-sight RF signal that provides a bearing of the 

airborne receiver with respect to magnetic north. In the following discussion, it is 

assumed that the magnetic bearing angle, has been corrected with the magnetic bearing 

correction,  to yield the geodetic bearing angle, B : The VOR/DME navigation error 

model takes perfect information about the aircraft’s position and corrupts it according to 

the range and bearing biases for a given VOR/DME.  This corrupted aircraft position 

information is sent to the guidance system which guides the aircraft using the corrupted 

information.  
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Consider the illustration in Figure 9.1. The estimated aircraft position is in error from the 

actual aircraft position by a certain range error, ∆ρ , and bearing error, ∆B. Generally, the 

range and bearing from the station to the aircraft is calculated using the rhumb line 

bearing and distance algorithms in Section 8. 

 

• ρ :  The range to the station (nm) 

• B :   The bearing from the station (deg) 

• ∆ρ :  The total range error (nm) 

• ∆B:   The total bearing error 

 

B

ρ

∆B

ρ+∆ρ

Actual Aircraft Position

VOR/DME Estimated

 Aircraft Position

 
 

Figure 9.1.  An illustration of the range and bearing from the station 

 

The actual aircraft position in the NED or surface frame from the station is represented in 

(x,y) coordinates as defined in equations (3.210) and (3.212) where the terms xact  and yact  

are the actual (x,y) locations for the aircraft.    

 

x Bact = ρ cos      (21.1) 

 

y Bact = ρ sin      (21.2) 

 

The estimated location of the aircraft as determined from the range and bearing error is 

defined by equations (3.213) and (3.214). 

 

x B Best = + +ρ ρ∆ ∆a f a fcos      (21.3) 

 

y B Best = + +ρ ρ∆ ∆a f a fsin      (21.4) 
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The position error can be represented with ∆x  and ∆y . Considering the x equation first, 

we can write  

 

∆ ∆ ∆x B B B= + + −ρ ρ ρa f a fcos cos      (21.5) 

 

∆ ∆ ∆ ∆x B B B B B= + − −ρ ρ ρa fa fcos cos sin sin cos    (21.6) 

 

∆ ∆ ∆ ∆ ∆ ∆ ∆x B B B B B B B B B= − + − −ρ ρ ρ ρ ρcos cos sin sin cos cos sin sin cos  (21.7) 

 

Linearizing with respect to the error biases, we have equation (3.215). 
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  (21.8) 

 

Assuming a reference condition of ∆ ∆ρ = =B 0 , the linearized equation reduces to 

equation (21.9). 

 

∆ ∆ ∆x B B B= −ρ ρsin cos+      (21.9) 

 

The y equation can be manipulated similarly.  

 

∆ ∆ ∆y B B B= + + −ρ ρ ρa f a fsin sin     (21.10) 

 

∆ ∆ ∆ ∆y B B B B B= + + −ρ ρ ρa fa fsin cos cos sin sin   (21.11) 

 

∆ ∆ ∆ ∆ ∆ ∆ ∆y B B B B B B B B B= + + + −ρ ρ ρ ρ ρsin cos cos sin sin cos cos sin sin  (21.12) 

 

Linearizing, we have equation (21.13).  
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Assuming a reference condition of ∆ ∆ρ = =B 0 , the linearized equation reduces to 

equation (5.56). 

 

∆ ∆ ∆y B B B= +ρ ρsin cos     (21.14) 

 

Arranging in (21.9) and (5.56) in Matrix/Vector form, we have equation (12.14)  
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Generally, both the ground station and the airborne receiving equipment contribute to the 

range error and bias error. The terms δρVDA
 and δBTA

 characterize the airborne receiver 

biases. These terms are randomly generated when the aircraft is initialized. The 

VOR/DME station has errors, δρVDG
 and δBTG

,which need to be obtained from the 

VOR/DME station itself. Depending on what quadrant the aircraft is in with respect to 

the VOR/DME, the bias can be different. A VOR/DME station needs some way of 

returning the correct bias information when prompted with the bearing from the station, 

B .  Figure 9.2 illustrates the relationship between the VOR/DME and the four quadrants. 

For now, it may be easier to only have one bias per VOR/DME. 
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Figure 9.2.  Illustration of the quadrants of the compass rose with respect to a VOR/DME station 
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When the airborne and ground station biases are summed, they can be inserted into 

equation (12.15) resulting in equation (12.3). 
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However, the position of the aircraft is represented in terms of longitude and latitude. 

Therefore a conversion must be made.  Two conversion factors are used. These are: 

 

• nm
degµ

:  Nautical miles per degree of latitude 

• nm

ldeg :   Nautical miles per degree of longitude 

 

Equations (21.17) through (21.19) are used to calculate these conversion factors.  

 

nm er
degµ

π
=

2

360
      (21.17) 

 

cosl e acr r µ=       (21.18) 

 

2

360
degl

lnm
rπ

=       (21.19) 

 

The terms in the equations are defined as follows: 

 

• re:  The radius of the Earth in nautical miles 

• rl:  The radius from the polar axis to the surface of the Earth at a given latitude 

• µ ac :  The aircraft’s current latitude 

 

Finally, the aircraft’s estimated (corrupted) position can be calculated using equations 

(3.216) and (21.21). 
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The terms in the equations are defined as follows: 

 

• µ ac :  The aircraft’s current actual latitude 

• lac :    The aircraft’s current actual longitude 

• µ e:    The aircraft’s estimated latitude 

• le :     The aircraft’s estimated longitude 

 

The estimated values are the final return values.  
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Figure 9.3.  Logic for determining if the current VOR/DME used for navigation should be changed 
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The DME ground equipment accuracy is 0.05nm (1σ) while the airborne equipment 

accuracy is 0.25nm (1σ) or 1.5% (1σ) of range, whichever is greater (AC90-45A
4
). The 

accuracy of the VOR ground equipment is 0.95
0
 (1σ) while the airborne equipment is 

1.5
0
 (1σ) (AC90-45A). By far, the greatest contributor to the navigation error is the 

bearing accuracy. The DME error plays a small role.   

 

Slant range error is not accounted for explicitly in the model. This is because the altitude 

of each VOR/DME, which would need to be known to make the calculation, is not 

known. Furthermore, since the slant range error of a given situation can be estimated by 

the pilot, the pilot is likely to compensate for it when crossing fixes and capturing radials. 

Therefore, slant range error is unlikely to contribute greatly to the navigation error.  

9.1.2 Determining the Proper VOR/DME Station to use for Navigation 

When an aircraft is navigating using VOR/DME navigation, the pilot must tune in the 

VOR/DME which is associated with the particular segment which he/she is flying. The 

proper nav-aid information would be retrieved from the chart used for navigation. This 

level of realism does not exist explicitly in the TGF simulation because capturing every 

detail and nuance of the low altitude victor routes and high altitude jet routes would be 

prohibitively expensive to implement. Therefore, the victor and jet routes are not being 

explicitly followed. Rather, the aircraft only has knowledge of the fixes on the route and 

whether or not those fixes are VOR/DME stations or intersections. Because of this 

simplification, the navigation system must look at the available nav-aids along the route 

and determine which one would be most appropriate to use for navigation.  

 

Figure 9.3 contains the logic which is used to determine whether or not the current 

VOR/DME should be switched.  The logic can also be expressed as a set of  the 

following rules: 

 

• A fix is either a VOR/DME or an intersection 

• A segment is defined by two fixes which are located at the endpoints of the segment 

• If one of the fixes associated with the segment is a VOR/DME, that VOR/DME is 

used for navigation.  

• If both fixes associated with the segment are VOR/DME’s , then the VOR/DME 

closest to the aircraft is used for navigation. 

• If neither fix is a VOR/DME, then a search is done to find the best VOR/DME along 

the route to use.   

 

                                                 
4
 AC90-45A: Advisory Circular “Approval of Area Navigation Systems for Use in the U.S. National 

Airspace System” 
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It is also worth noting that the navigation algorithms have nothing to do with switching 

segments. However, VOR/DME navigation needs to be aware of switches when they 

occur. If the current VOR/DME needs to be switched, the logic in Figure 9.4 must be 

used.  
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Use logic

 for segments 

without

 VOR/DMEs 

 

Figure 9.4.  Logic for determining the appropriate VOR/DME for the next segment 

 

Generally, there are either one or two VOR/DMEs on the segment.  When there is only 

one VOR/DME, that VOR/DME is used.  If there are two VOR/DMEs on the segment, 

the aircraft must use the closest one.  When the segment does not have a VOR/DME 

associated with it, one must be determined. The algorithm must decide which of two 

VOR/DMEs is most appropriate. These two VOR/ DMEs are: 

 

• The previous VOR/DME which was used for navigation on the last segment 

• The next VOR/DME that lies along the route but not on the current segment 

 

Such a scenario is illustrated in Figure 9.5. The aircraft lies on a segment which does not 

have a VOR/DME but it is in between two segments that do have a VOR/DME. From 
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inspection of the drawing, we can see that the next VOR/DME along the route is a much 

better choice because the current segment lies along a radial of the next VOR along the 

route.  

 

vptfntf
vvplfnlf

v

Next VOR/DME

Previous VOR/DME

IntersectionIntersection  

Figure 9.5.  An illustration of the geometry used to determine which VOR/DME should be used for 

segments without a VOR/DME 

 

To algorithmically draw the same conclusion, there are four unit vectors that must be 

calculated. The calculations can be made with a bearing calculation algorithm along with 

the vector tool of choice. It is imperative to the function of this algorithm that the vectors 

be unit vectors and not vectors of unequal magnitudes. These vectors are  

 

• 
�
vntf

:  A unit vector from the trailing fix to the next VOR/DME 

• 
�
vnlf

:  A unit vector from the leading fix to the next VOR/DME 

• 
�
vptf

:  A unit vector from the trailing fix to the previous VOR/DME 

• 
�
vplf

:  A unit vector from the leading fix to the previous VOR/DME 

 

The unit vectors associated with each VOR/DME are then dotted with each other. Ideally, 

the dot product is equal to unity for a perfect match between a VOR/DME and a segment. 

However, for the purposes of the algorithm, we choose the higher value of equations 

(21.22)and (12.35)as shown in Figure 9.6. 

 
� �
v vn ntf lf

⋅       (21.22) 
� �
v vp ptf lf

⋅      (21.23) 

 

The higher value indicates that the vectors are pointing nearly in the same direction. This 

indicates that the segment lies along a radial to the VOR/DME in question which makes 

it a good candidate for navigation. 

 

There will be cases when neither VOR/DME is appropriate for navigation. In this case, 

the algorithm still chooses the highest dot product; however, it can not really be said that 

the aircraft is following a radial To or From a VOR. The aircraft is area navigating 
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instead. This is not necessarily a realistic procedure for an aircraft that is flying using 

VOR/DME navigation; however, when such anomalies in the flight plan occur, it is best 

that the aircraft continue to fly rather than indicate an exception.      

� � � �
v v v vn n p ptf lf tf lf

⋅ > ⋅e j e j
If

Use Previous VOR/DME

Use Next VOR/DME

� �
v vp ptf lf

   
� �
v vn ntf lf

  
Calculate

Determine the next VOR/DME along the route

 
 

Figure 9.6.  Logic For determining which  VOR/DME to use when no VOR/DME lies along route 

9.2 GPS Navigation 

There are a number of error sources that contribute to the aircraft GPS position and 

velocity error. Up until 2000, the dominant error was the GPS satellite clock error.  

 

GPS satellite clock error is an intentional degradation of the GPS signal called Selective 

Availability (SA). It was implemented in 1990 to deny full position and velocity accuracy 

to “unauthorized users” after initial testing of the GPS system revealed accuracies much 

better than anticipated.  

 

In May of 2000, the United States stopped degrading GPS performance with SA. 

  

The clock error of SA in GPS navigation was formerly modeled using a 2
nd

 Order Gauss-

Markov model. This is discussed in Appendix B. The analysis in Appendix B develops a 

closed-form 2
nd

 order difference equation for 2
nd

 Order Gauss-Markov process that forms 

the basis for implementing the process in code. 
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Other sources of GPS navigation error are so much less significant than that of GPS 

satellite clock error (from SA) that they do not merit inclusion in this model of Aircraft 

Dynamics. 

9.3 ILS Localizer Error Model 

For an ILS localizer, the measured lateral deviation is the angle, ∆BI . This can be 

converted into a lateral position error as follows. The slant range, rIT  to the runway, is 

approximated using the rhumb line distance algorithm. Then the lateral position, rCT  is:   

 

r r BCT IT I= ∆       (21.24) 

 

The deviation angle is comprised of errors from ground based equipment and airborne 

equipment as shown in equation (21.25) where ∆BI G,  is the ground based component and 

∆BI A,  is the airborne component.  

 

∆ ∆ ∆B B BI I G I A≡ +, ,       (21.25) 

 

A number of references have determined that the ground-based component of the 

localizer error is not a simple random bias. Instead, it varies with the distance from the 

runway. A convenient model for this error source is to treat it as a spatial first-order 

Gauss Markov as shown in equation (21.26). By that is meant that the error does not vary 

with time but with the location of the receiver from the ILS localizer transmitter.  

 

∂

∂
β

s
B s s B s n sI G B I G B∆ ∆, ,a f a f a f a f= − +     (21.26) 

 

where, 

 

• n sBa f:  Scaled Gaussian white noise 

• β B sa f : Spatial damping factor 

 

ds
ds

dt
dt v t dtIT= FH
I
K  = a f      (21.27) 

 

β βB IT Bt v t sa f a f a f=       (21.28) 

 

∆ ∆�
, ,B t t B t n tI G B I G Ba f a f a f a f= − +β     (21.29) 
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The actual ILS localizer beam bending errors for five different airports are illustrated in 

Figure 9.7. A set of five simulated ILS localizer beam bending errors using the above 

statistical model is presented in Figure 9.8. 

 

Figure 9.7.  Measured ILS Localizer Bearing Deviation Angle Errors 
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Figure 9.8.  Simulated ILS Localizer Bearing Deviation Angle Errors 
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10. The	Longitudinal	Guidance	System		
When an aircraft flies along a route it is often necessary to have the aircraft automatically 

meet speed and altitude constraints that are placed on fixes along the route. These are 

generally termed “crossing restrictions.” One case where crossing restrictions are often 

used is when modeling flight along a Standard Arrival Route (STAR). When the flight 

plan contains a STAR for the pilot to follow, it is assumed that the pilot has at least a 

textual description of the STAR and will make appropriate speed and altitude changes as 

published.  

 

This chapter describes procedures by TGF-simulated aircraft in meeting or preparing to 

meet longitudinal route restrictions. The procedures will involve the deployment of high-

lift devices and targeting of desired speeds and altitudes. 

10.1 Aircraft Device Deployment 

Aircraft devices include high-lift devices (ie, wing flaps and slats) and landing gear. This 

section describes their deployment. 

10.1.1 Flaps on Approach 

For all aircraft, the flaps (or, more appropriately, high-lift devices) are modeled, as they 

are in BADA, with lift and drag coefficient values corresponding to the flap and slat 

deployment for the different wing configurations for the aircraft. The five configurations 

are cruise, initial climb, take-off, approach, and landing. We have changed the names to 

flaps0, flaps1, flaps2, flaps3, and flaps4, respectively, to remove the implication that a 

particular configuration is used in a particular phase of flight. Typically, piston aircraft 

have only 4 configurations, so flaps3 and flaps4 are identical. The standard flap schedule 

on approach is presented in Tables Table 10.1 and Table 10.2 . This is the schedule that is 

followed under standard approach. Once the aircraft’s speed drops below the given flap 

set speed, that configuration is set. Flaps may be extended on a more aggressive schedule 

if the aircraft needs to lose energy more quickly, but never when the aircraft is above the 

flap limit speed. The flap limit speed is 30 knots above the flap set speed for jets and 

turboprops and 20 knots above the flap set speed for pistons. 

Flap Configuration Set Speed (kts) 

flaps0  

flaps1 1 3 80.
LDstallV +  

flaps2 1 3 60.
LDstallV +  

flaps3 1 3 30.
LDstallV +  

flaps4 1 3 10.
LDstallV +  

Table 10.1  Flap Deployment Schedule for Jet and Turboprop Aircraft on Approach 
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Flap Configuration Set Speed (kts) 

flaps0  

flaps1 1 3 50.
LDstallV +  

flaps2 1 3 30.
LDstallV +  

flaps3 1 3 10.
LDstallV +  

flaps4 1 3 10.
LDstallV +  

Table 10.2  Flap Deployment Schedule for Piston on Approach 

10.1.2 Flaps on Takeoff 

The algorithm for the deployment of flaps in takeoff flight is presented in Figure 10.1. 

Basically, takeoff flaps are deployed for takeoff and retracted as the aircraft climbs. Flaps 

are not deployed in cruising flight. 

10.1.3 Speed Brakes 

Speed brakes are modeled in the simulator as an increment, 
brakesD

C , to the profile drag 

coefficient. Speed brakes are deployed if an aircraft is asked to expedite its descent. 

Algorithms within the simulator guidance module will deploy speed brakes in the case 

that the aircraft is predicted to be unable to reach an altitude-fix restriction. Speed brakes 

may also be deployed in the landing sequence if the aircraft is well above the glide slope. 

 

 

Figure 10.1:  Flap Deployment Algorithm 
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10.1.4 Spoiler 

The spoiler is modeled in the simulator as an increment, 
spoilerD

C , to the profile drag 

coefficient and a complete loss of lift. It is used in the Touchdown region (Region 10) 

only and is deployed immediately when the aircraft’s altitude is the same as the runway 

altitude. Region 10 uses an open-loop controller with the thrust set to touchdown thrust 

and the lift coefficient set to zero (a consequence of spoiler deployment). 

10.1.5 Landing Gear 

Landing gear are modeled in the simulator as an increment, 
gearD

C , to the profile drag 

coefficient. They are extended for the takeoff sequence and retracted once the aircraft 

reaches 400 feet AGL. They are also extended during the landing sequence once the 

aircraft has passed the outer marker of its assigned runway. 

10.1.6 Ground Braking 

When the braking function was initially conceived, it was thought that some number from 

a data file would be read into the airframe model, and an increase in drag would result 

from some static braking force. However, the aircraft data files did not have any 

information regarding braking force. Equation (5.1) is a proposed ground breaking model 

that assumes that the braking force is 30% of the aircraft’s weight. This approximation is 

convenient because it does not rely on an independent ground braking parameter in the 

aircraft data files. However, ground breaking is not currently implemented in the TGF 

simulator. 

 

0.3
brake ac

D W=       (5.1) 

10.2 Preparing for Approach and Landing 

A pilot that is approaching a terminal airspace can infer certain details about his descent 

and deceleration. He may have flown in the airspace before and so he knows how 

controllers usually guide him in to the runway. He may have witnessed the paths of the 

aircraft in front of him. In either case, he knows that it would behoove him to begin either 

descending or decelerating or both within the implied constraints of the airspace or the 

constraints imposed on him by the controller. 

 

These are details that are difficult to convey to a computer program that requires 

absolutes in the form of target speeds and altitudes. At the very least, we need to inform 

the simulator that the aircraft will soon begin its approach to the airport and that it may 

begin descending and decelerating within imposed constraints. This causes the aircraft to 
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make decisions on how quickly it needs to lose energy and whether or not to deploy drag 

increasing devices. 

10.2.1 Energy Gradient 

In reality, pilots do not make calculations comparing the energy gradient needed with the 

aircraft’s ability to lose energy, but they do make intuitive judgments of this comparison. 

Our technique of modeling this judgment is to make those calculations. The simulator 

will calculate its current mechanical energy state (based on speed and altitude) and a 

target mechanical energy (based on a preferred speed and altitude upon crossing some 

fix, e.g., the outer marker) and divide the difference by the distance to the fix and 

compare that to its ability to lose energy. If the aircraft needs to increase its ability to lose 

energy, it can deploy a drag increasing device, such as speed brakes or flaps. This is 

referred to as “dirtying” the aircraft. 

 

An aircraft’s specific mechanical energy is the sum of its specific kinetic energy and 

specific potential energy, as defined by its speed and altitude. This was first shown in 

equation (5.11). 

 

 
2

2

GV
e gh= +  (5.11) 

 

We define an aircraft’s energy gradient as the rate of change of specific mechanical 

energy per unit change in ground distance. 

 

 
de

eg
dx

≡  (10.1) 

 

The aircraft’s actual energy gradient is a measure of its ability to lose energy. Combining 

equation (10.1) with equation (5.11), we get, 

 

 GG
G G

dV dt dh dtdV dh
eg V g V g

dx dx dx dt dx dt
= + = +  

 G

G

h
eg V g

V
= +

�
�  (10.2) 

 

Comparing this to equation (5.19) gives an equation for the aircraft’s energy gradient in 

terms of thrust, drag, and mass. 

 

 
T D

eg
m

−
=  (10.3) 
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The energy gradient needed is defined as the difference between the target and current 

specific mechanical energies divided by the ground distance to the target. This can be 

represented in discrete notation. 

 

 0t
n

e e
eg

x

−
=

∆
 (10.4) 

 

An aircraft on approach will be descending and decelerating and will, therefore, have a 

negative energy gradient. An aircraft can decrease its energy gradient (i.e., make it more 

negative) by deploying drag increasing devices. A comparison of the energy gradient, eq. 

(10.3), with the needed energy gradient, eq. (10.4), will determine if this is necessary. If 

the needed energy gradient is less than the actual energy gradient, deployment of a drag 

increasing device may be necessary. 

 

Under normal approach conditions, an aircraft’s energy gradient will decrease (i.e., 

become more negative) as it slows down and deploys flaps in preparation for landing. 

Because the aircraft is typically in a clean configuration above about 8000 feet altitude, 

the needed energy gradient may be less than the actual energy gradient even though the 

aircraft is following a typical glide ratio and there is no urgency for dirtying the aircraft. 

The algorithm developed for drag device deployment must consider this. If the aircraft is 

on a normal glide ratio above 8000 feet, the aircraft will not increase its urgency. 

 

The glide ratio is something that airline pilots normally consider on approach. A glide 

ratio of 3:1, distance:height, with distance to the runway measured in nautical miles and 

height measure in thousands of feet above ground level (AGL), is considered typical. For 

example, an aircraft that is 30 nm from the runway and at 10,000 feet has a glide ratio of 

3:1. The equation for glide ratio is presented below. 

 

 
( )

( )1000AGL

x nm
glideRatio

h ft

∆
=  (10.5) 

 

If an aircraft is not on a normal glide ratio above 8000 feet and its needed energy gradient 

is less than its actual gradient, it will have trouble losing energy in its descent. The 

simulator will mark this aircraft as needing to increase its “urgency” in getting down. 

This can mean deploying flaps, speed brakes, or landing gear as appropriate. The 

simulator will respond to an increasing urgency by first trying to set the next increment of 

flaps (after checking to see that the aircraft is below the flap limit speed), then the speed 

brakes, then the landing gear. The algorithm for comparing the needed and actual energy 
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gradients for increasing urgency is presented in Figure 10.2. The algorithm for the 

deployment of drag devices is presented in Figure 10.3. 

 

 

Figure 10.2:  Comparing needed and actual energy gradients to determine urgency 

 

Figure 10.3:  Procedure for increasing urgency (i.e., deploying drag devices) 

Increase urgency 

V > (Vlimit)next flap? 

set next 

flap 

yes 
Speed brake on? 

Deploy 

speed brakes 

yes 
V > (Vlimit)gear? 

Deploy 

landing gear 

yes 

no no no 

Return 

in 

eg < egn? 
speed brakes on 

and 

egno sb < egn? 

h < 8000’ 

and 

glideRatio ≤ 2.5? 

Increase 

urgency 

Turn off speed 

brakes 

yes 

yes yes 

no 

no no 

Exit 
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Speed brakes are a convenient drag device used to increase an aircraft’s ability to lose 

energy. When the speed brakes are deployed, they increase the aircraft’s parasite drag 

coefficient by an increment given in the aircraft data file. Speed brakes typically work so 

well that after a period of use, they are no longer needed. If speed brakes are deployed 

and the actual energy gradient is less than the needed energy gradient, we can compare 

the needed energy gradient against the aircraft’s energy gradient without speed brakes to 

see if they can be retracted. 

 

The aircraft’s mass and descent thrust are independent of speed brake deployment. From 

eq. (10.3), the aircraft’s energy gradient without speed brakes is given by the following. 

 

 
no sb

no sb

T D
eg

m

−
=  

 

The difference between the energy gradients with and without speed brakes is then 

calculated by subtracting eq. (10.3). 

 

 
( ) ( )

0 0

2 2 21
2 a D L D L

no sbno sb

no sb

V C KC C KCD D
eg eg

m m

ρ  + − +−   − = =  

 

The speed brakes affect neither the induced drag coefficient nor the lift coefficient. 

 

 
( ) ( )

0 0

2
21 12 2 speedbrakes

a D D
no sb a D

no sb

V C C V C
eg eg

m m

ρ ρ
 −
  − = =  

 

So the difference in the energy gradient in the two configurations is a function of the 

parasite drag coefficient increment of the speed brakes. We can simplify this expression 

further by using an approximation for the lift coefficient. In a steady, wings-level descent, 

the lift is equal to the vertical component of weight. 

 

 
21

2

cos

cos
L

a

L W

W
C

V

γ

γ

ρ

=

=
 

 

Neglecting the flight path angle, γ, we get, 
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21

2
L

a

mg
C

Vρ
= , 

 

a reasonable approximation for the lift coefficient. The energy gradient without speed 

brakes is then,  

 

 
speedbrakesD

no sb

L

gC
eg eg

C
= +  (10.6) 

10.2.2 Distance Remaining to Runway 

In order to calculate the needed energy gradient of equation (10.4) and the glide ratio of 

equation (10.5), we need to determine the distance remaining to the runway. This cannot 

be calculated simply as the distance between the aircraft’s current position and the 

runway threshold because the aircraft may not be pointed at the runway. In the case of a 

simple approach, an aircraft is following a pre-determined route to the runway and so the 

distance to the runway is known. But in many cases, the aircraft does not know its 

directed route to the runway. If the aircraft is on a downwind leg, it could be vectored to 

the approach by the controller at any time. In this case, we have to make assumptions 

about the typical approach. 

10.2.2.1 Distance Remaining to Runway along a Filed Route 

If the aircraft’s lateral guidance system is following a filed route and the last fix on the 

route is airport at which the aircraft is landing, then the distance remaining to the runway 

is the distance left along the route. If the airport is not the last fix, then the airport fix is 

appended to the filed route and the distance remaining to the runway is the distance left 

along the route. For the purpose of calculating the energy gradient on approach, the 

remaining route distance is typically limited to a maximum of 20 nm. 

 

As discussed in Chapter 8, TGF routes are typically Track-to-Fix (TF) segments with fly-

by waypoints. An estimate of the remaining route distance can be obtained by adding the 

distances, S, of the segments between the fixes, but this ignores that the segments are 

shortened by flying by the termination fixes when transitioning between segments. We 

can get a better estimate by predicting the aircraft’s curved path in flying by the 

termination fixes. 

 

Let us assume that the path flown by an aircraft in transitioning between TF segments 

with fly-by waypoints is a constant radius turn with a constant bank angle (ie, 

instantaneous bank dynamics). Using this assumption and referring to Figure 8.16, the 

length of the transition arc is given by, rt∆ψ. (The assumed constant turn radius, rt, is 

obtained from equation (8.25) using the speed in the route and a standard bank angle.) 
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For each transition, the route distance is shortened by twice the offset length and 

increased by the transition arc length. For n segments, our estimate of the route distance 

is… 

 

 ( )
1

1 1

2
n n

i t offset

i i

RouteDistance S r l
−

= =

= + −∑ ∑  

 

Using equation (8.13) for loffset and ignoring the lag factor, k, this becomes… 

 

 
1

1 1

2 tan
2

n n

i t

i i

RouteDistance S r
ψ

ψ
−

= =

 ∆  
= + ∆ −   

  
∑ ∑  (10.7) 

 

10.2.2.2 Distance Remaining to Runway for Vectored Aircraft 

If the aircraft’s lateral guidance system is following a vector, we have to make 

assumptions concerning the vectored approach. These assumptions are based on a typical 

vectored approach that meets Federal Air Regulations (FARs). They are as follows: 

 

• Aircraft will merge onto the localizer bearing on a 30° intercept, and 

• Aircraft will merge onto the localizer bearing at least 3 nm before the outer 

marker. 

 

We assume that the aircraft will fly its current heading until crossing the 30° intercept, 

then follow the 30° intercept to the localizer bearing, then follow the localizer bearing to 

the runway. This approach is illustrated in Figure 10.4. 

 

In order to develop an algorithm for the assumed vectored approach, the following 

variables are defined. 

 

P
�

 a vector from a position 3 nm from the outer marker (along the localizer 

bearing) to the aircraft 

dP-rwy the distance between a position 3 nm from the outer marker to the runway 

threshold 

ψp the bearing from a position 3 nm from the outer marker (along the localizer 

bearing) to the aircraft 

ψh the aircraft heading (Actually, the ground track heading is the accurate angle 

to use, but the aircraft heading will yield a suitable approximation.) 

ψloc the localizer bearing 

 

Note: all angles and angle differences are defined in the range [0,360]. 
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Figure 10.4:  Illustration of Assumed Vectored Approach 

 

By inspection of Figure 10.4, we write the following vector equation. 

 

 2 1int h Pd d P Pψ ψ ψ∠ − ∠ = = ∠
�

 

 

Resolving into east - north components, we get, 

 

 
2 1

2 1

int

int

sin sin sin

cos cos cos

h P

h P

d d P

d d P

ψ ψ ψ

ψ ψ ψ

− =

− =
 

 

In matrix form, 

 

 
1

2

int

int

sin sin sin

cos cos cos

h P

h P

d
P

d

ψ ψ ψ

ψ ψ ψ

−     
=    −    

 

 

Solving the matrix equation, 

 

 

1

1

2

1

2

1

2

int

int

int int

int int

int

int int

sin sin sin

cos cos cos

cos sin sin

cos sin cossin cos cos sin

sin cos cos

sin cos cos sin

h P

h P

P

h h Ph h

P

h h

d
P

d

d P

d

d P

d

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψψ ψ ψ ψ

ψ ψ

ψ ψ ψ ψ

−
−     

=     −    

−     
=     −−     

− 
=  − 

intsin

sin cos cos sin

P

P h P h

ψ ψ

ψ ψ ψ ψ

 
 − 

 

 

From the trigonometric identity, 

 

 

P
�

 

30° 

ψint 

ψloc 

ψh 

3nm 

OM 

d1 

d2 
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 ( )sin cos cos sin sina b a b a b− ≡ −  

 

The solution for d1 and d2 becomes, 

 

 
( )

( )
( )

1

2

int

int

sin

sinsin

P

P hh

d P

d

ψ ψ

ψ ψψ ψ

−  
=    −−   

 

 

or 

 

Figure 10.5:  Algorithm for Determination of Distance Remaining to Runway 

 

P, ψp, ψh, ψloc 

ψint = ψloc + 30° 

ψint = ψloc − 30° 

( )
( )

( )
( )

1

2

int
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sin

sin

sin

sin

P

h

P h

h

d P
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ψ ψ
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∆x = d1 + d2+ dP-rwy 

∆x = 20 nm 

∆x = dac-rwy 

d1 < 0 

or 

d2 < 0 

30° ≤ (ψp - ψloc)  ≤ 180° 

180° ≤ (ψp - ψloc)  ≤ 330° 

∆x 

yes 

yes 

yes 

no 

no 

no 
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( )
( )

( )
( )

1

2

int

int

int

sin

sin

sin

sin

P

h

P h

h

d P

d P

ψ ψ

ψ ψ

ψ ψ

ψ ψ

−
=

−

−
=

−

 (10.8) 

 

And the distance remaining to the runway is given by 

 

 ∆x = d1 + d2+ dP-rwy (10.9) 

 

If either d1 or d2 is negative, then the heading will not intersect the localizer intercept. In 

this case, we assume ∆x = 20 nm. If the aircraft is between the left and right localizer 

intercepts, we will assume that the distance remaining to the runway is the straight line 

distance. (This assumptions fails to consider that the aircraft may be between the 

intercepts and moving away from the runway, but that is an unlikely case.) Failing this 

case, if the aircraft is left of the localizer bearing, it is assumed that the aircraft will cross 

the left intercept, if right, then the right intercept. In any case, if the calculated value for 

the distance remaining to the runway is greater than 20 nm, then we set ∆x = 20 nm. 

Figure 10.5 illustrates this algorithm. 

 

10.3 Crossing Restrictions in Descent 

When an aircraft is asked to descend and cross a fix at a specific altitude, normal 

procedure is for the aircraft to maintain the current altitude for as long as possible. This 

requires a calculation of the top of descent point. The reason for the delay in beginning 

the descent is that aircraft are more efficient at higher altitudes and so prefer to fly there. 

Conversely, there is no need to delay a climb if the crossing restriction is above the 

current altitude because the aircraft prefers to be at the higher altitude sooner rather than 

later. 

 

Experience shows that aircraft in a constant CAS descent below the tropopause have very 

little variation in flight path angle. Our approach in the TGF model is to make a quick 

estimate of the top of descent point, apply a small margin of safety (i.e., make the glide 

slope shallower), and to fly with dual control along the calculated flight path angle in the 

same manner we fly along an ILS. We make consideration for alternate variations in true 

airspeed by estimating the energy ratio. Since we will have no prior knowledge of wind 

variation with altitude, we will neglect the effects of wind. 

 

The first step is to make an estimate of the flight path angle. Equation (2.59) is rewritten 

here. 
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 sin
a a

T D
V g

m
γ

−
= −�  (2.59) 

 

Once again, we re-write this in the form of changing energy, removing the subscript, a, 

referring to the airmass. 
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T D

g V
m

γ
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+ =�  

 

 sin 1
V V T D

g Wh
γ
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 sin 1 sin 1
VV V dV T D
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The energy ratio, ER, is defined as… 

 

 
V dV

ER
g dh

=  

 

…and so the flight path angle is given by… 

 

 
( )

1
sin

1

T D

W ER
γ

−
=

+
 (10.10) 

 

To make an estimate of the flight path angle, we first need an estimate of the energy ratio. 

We calculate the energy ratio averaged over the entire descent, from point 1 to point 2, 

using an average value for the velocity. Our approximation for the energy ratio over the 

entire descent is given by… 

 

 
( )
( )

( )
( )

2 1

2 1
2 2

2 1

2 1 2 1

2

2

V V
V VV V

ER
g h h g h h

+ 
  −− = =

− −
 (10.11) 

 

Then we solve for the flight path angle using equation (10.10) and the top of descent 

values for thrust, drag, and weight. To allow for some margin of safety, the desired flight 

path angle 10% shallower. 
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The next step is to obtain the distance to the crossing fix, dfix and the top of descent 

distance, dTOD. For aircraft flying a route, the distance to the crossing fix is the distance 

along the route to the fix. For aircraft on vectors, this is the rhumb line distance to the fix. 

The top of descent is the distance from the fix at which the flight path intersects the 

current altitude. The aircraft will maintain steady, level flight at the current altitude and 

distance until one nautical mile before the top of descent. 

 

 2 1

tan
TOD

d

h h
d

γ

−
=  (10.13) 

 

Once in the descent, the desired altitude is the height of the desired flight path at a 

distance dfix from the crossing fix. 

 

 2 tan
d fix d

h h d γ= −  (10.14) 

 

 

Recall that the control system needs a desired altitude rate, not a desired altitude. As in 

Region 7 for steady, level flight, equation (5.7) is used to determine the altitude rate that 

would correct the aircraft’s altitude error, but we must also consider that the desired 

altitude is changing per equation (10.14). We add the derivative of equation (10.14)  to 

equation (5.7) to get the desired altitude rate. 

 

 ( ) ( ) tan
d d fix dh

d
h K h h d

dt
γ= − −�

�  

 

The time derivative of the aircraft’s distance from the fix is simply the negative of the 

aircraft’s groundspeed, since the ground speed and the distance from the fix are defined 

positive in opposite directions. 

 

 ( ) tand d G dh
h K h h V γ= − +�
�  (10.15) 

. 

The desired speed during the descent is given either by the preferred speed profile for the 

particular aircraft type in a descent or that given per the speed restriction and equation 

(5.9) or (5.10) for IAS-based or Mach-based speed control.
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11. Flight	Technical	Error	
The flight technical error (FTE) is the inability or inexactness of the pilot or autopilot to 

steer the aircraft perfectly along the desired course. If the aircraft is steered by an 

autopilot, it is the error in steering the aircraft perfectly along the intended course. The 

waypoint and navigation aid errors are independent of the FTE. 

 

Field data indicate that there is a random lateral FTE component that exists along the 

route segments. For the FMS-guided aircraft, the random en route wander was found to 

be 0.13 nm. (1σ) while for the non-FMS-guided (piloted) aircraft, it was found to be 0.7 

nm (1σ), with a period varying from roughly 4 to 8 minutes during the en route flight 

segment (Hunter, 1996). 

 

A reasonable model for this random lateral position wander, δrFTE , is described by a 

second order Gauss Markov process:  
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   (12.1) 

 

 

The terms in the expression are defined as follows: 

 

• δrFTE :  The lateral position error (nm) 

• δvFTE:  The lateral position error velocity (nm/sec) 

• c :        The scale factor of the forcing function 

• ω 0 :     The natural frequency of the system 

• β :       The damping of the system 

• uFTE :   The zero mean unity variance Gaussian white noise 

 

For terminal flight segment during ILS localizer guidance, it was found that the lateral 

wander tended to increase linearly with the distance from the runway (Timoteo, 1990). 

This suggests that a FTE based on bearing deviation angle wander is more appropriate 

during the terminal flight phase. Therefore, a random wander of 0.24 degrees (1σ) with 

an approximate time constant of 90 seconds is appropriate. In the case of the ILS, the 

second order Gauss Markov process is written in terms of bearing deviation angle wander 

as shown in equation (21.13).  
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The new terms in equation (3.212) are as follows: 

 

• δBILS FTE, :   The bearing deviation angle (deg) 

• δΩ ILS FTE, :  The bearing deviation rate (deg/sec) 

11.1 Operational Details 

The flight technical error is quite simple to implement using the Gauss Markov processes 

with valid error parameters. The three types of flight technical error only operate when 

the aircraft is operating under the route following guidance system. This guidance 

algorithm must prompt the particular flight technical error model being used for an 

update to the lateral position deviation, δrFTE . 

11.1.1 Piloted Flight Technical Error 

The piloted flight technical error proceeds once the Gauss Markov process has been 

initialized. For each time step that the piloted flight technical error is used, the  

Gauss Markov process is advanced one time step and a value for δrFTE  is returned. The 

piloted flight technical error uses a Gauss Markov process with the following parameters: 

 

• β = 0 50. :  The damping term. 

• σ p = 0 7.  nm :  The standard deviation of the ‘position’ 

• σ v = 0 011944.  nm
sec :  The standard deviation of the ‘velocity’ 

11.1.2 FMS Flight Technical Error 

The FMS flight technical error proceeds once the Gauss Markov process has been 

initialized. For each time step that the FMS flight technical error is to be used, the Gauss 

Markov process is advanced one time step and a value for δrFTE  is returned. The FMS 

flight technical error uses a Gauss Markov process with the following parameters: 

 

• β = 0 50. :  The damping term. 

• σ p = 0 13.  nm :  The standard deviation of the ‘position’ 

• σ v = × −1 10 3.444  nm
sec :  The standard deviation of the ‘velocity’ 

11.1.3 ILS Flight Technical Error 

ILS flight technical error is more complex because the Gauss Markov process is set up to 

return an angular deviation from the path rather than a linear distance.  Therefore the 

linear distance must be calculated from the angular deviation δBILS FTE,  which is returned 
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in degrees. To get the lateral offset, equation (3.215) is used where ds  is the distance to 

go to the localizer. Generally, the ILS is modeled as a two segment route, where the first 

capture segment is from some arbitrary initial approach fix to the final approach fix, and 

the second segment is from the final approach fix (the beginning of the glide slope for 

ILS approaches) to the localizer. Therefore, the distance that the aircraft is to the localizer 

can be calculated by using the rhumb line distance to a fix algorithm.  

 

δ
π

δr d BILS FTE s ILS FTE, ,sin= F
H

I
K180

     (12.3) 

 

The ILS flight technical error uses a Gauss Markov process with the following 

parameters: 

 

• β = 0 50. :  The damping term. 

• σ p

o= 0 3. :  The standard deviation of the ‘position’ 

• σ v = 0 06. deg
sec :  The standard deviation of the ‘velocity’ 
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12. Model	Verification	and	Validation	
Verification and validation of the algorithms used to develop the TGF simulation was 

accomplished primarily by using a small JAVA tool that served as a testing platform for the 

algorithmic development. This tool, which is named TGF-test, allowed for real time 

manipulation of aircraft trajectories on the screen and also monitored many of the aircraft’s state 

variables on the screen in the form of stripcharts. All algorithms that are coded in the main TGF 

simulation were first tested and evaluated in the TGF-test simulation. The main screen of the 

TGF-test algorithm is shown in Figure 12.1 where aircraft trajectories are superimposed over an 

electronic map of fixes and routes. The aircraft icon, which represents the flying aircraft, shows 

the heading orientation so the difference between ground track and heading can also be viewed 

visually.  
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Figure 12.1.  Simulation Window for TGF-test 

 

The aspects of the TGF simulation that needed verification are as follows: 

 

• Constant airspeed climbs and descents 

• Mach/CAS descents and CAS/Mach climbs 

• Speed changes during climbs and descents 

• Automatic route capture  

• Vectored route capture  

• Initial fix route capture 

• Segment transition 

• Flight technical errors 

• Navigation errors  

• Take-off and landing 
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When appropriate, the TGF simulation model was compared to Pseudocontrol, the aircraft 

dynamics kernel of PAS. PAS, the NASA tool for trajectory generation, has been considered as 

an acceptable baseline for aircraft performance.  Such cases include the verification of climb and 

descent performance as well as speed changes. For other operations, such as route capture and 

route following, visually inspecting the maneuvers is sufficient to insure proper operation.  

12.1 Constant Airspeed Climbs and Descents 

The PAS model in Pseudocontrol uses much higher fidelity aircraft and engine models than what 

the TGF model uses, so it is expected that there would be some variation in performance. 

Generally, however, the difference in the actual trajectories generated by the simulations is 

negligible. While the trajectories are nearly identical, the TGF model does not produce fuel burn 

estimates which are as accurate as the PAS model because PAS uses many more coefficients in 

the model. Two comparisons of Pseudocontrol and TGF-test are presented in this section. 

 

The first comparison between Pseudocontrol and TGF-test is shown in Figure 12.2. Figure 12.2 

illustrates an MD-80 at 10,000 ft and 280kts as it initiates a constant indicated airspeed climb to 

30,000ft. Four stripcharts are shown in the plot, each representing a different aircraft state 

variable. These are Mach, indicated airspeed, altitude, and the lift coefficient. The Pseudocontrol 

plots are represented with the dark line and the TGF-test plots are shown in gray. The simulation 

shows a good match between the two models. Initially, there is a small fluctuation in the 

indicated airspeed of both models while the climb is established. Once the climb is established, 

both models hold the appropriate 280kt airspeed. The aircraft climb nearly identically in terms of 

altitude tracking. This is very important since the air traffic controllers are sensitive to the 

changing rate at which altitude increases. The Mach plot shows that both models track  
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Figure 12.2. Comparison of Pseudocontrol (black) and TGF-test (gray) in a constant indicated airspeed climb and 

280kt 

 

Mach number identically as well. Considering the lower fidelity model represented in the TGF-

test system, over Pseudocontrol, the data match is quite good.  

 

A similar comparison is made in a descent. An MD80 weighing 130,000lbs is commanded to 

descend from 30,000ft to 10,000ft at an airspeed of 300kts. The descent is shown in Figure 12.3. 

When the aircraft initiate the descent, there is some fluctuation in the indicated airspeed. In this 

example, the TGF-test model has a larger fluctuation than the Pseudocontrol simulation, but the 

fluctuation is still only 1.5kts. This small fluctuation is acceptable. Once the descent is 

established, both aircraft hold the commanded airspeed well. The altitude profile of the TGF-test 

aircraft matches the Pseudocontrol aircraft well and the Mach number varies properly also. 

12.2 Mach/CAS descents and CAS/Mach Climbs 

The idle thrust Mach/CAS descent and full thrust CAS/Mach climb are important features of the 

aircraft simulation because jet airliners are most likely to use these types of maneuvers for 

climbs and descents. Because the maneuvers are similar, this section will considers as its only 

test case, the idle thrust descent. Full thrust CAS/Mach climbs are simply reverses of the 

descents. 
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 When an idle descent is initiated, the throttle is pulled idle and the pilot descends at a rate so that 

the aircraft maintains the desired Mach of the desired Mach/CAS pair. At low speed and low 

altitude, convention dictates that the speed of aircraft be measured in terms of indicated airspeed. 

Therefore at some point during the descent, the pilot will capture the desired CAS of the 

Mach/CAS pair. As the pilot descends at a constant Mach, the indicated airspeed meter will 

show an ‘increase’ in speed. At some point during the descent, the indicated airspeed meter will 

read the desired indicated airspeed for the  
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Figure 12.3.  A comparison of Pseudocontrol (black) and TGF-test (gray) in a descent at a constant indicated 

airspeed of 300 kts 

 

descent. At this point, the pilot tracks the desired CAS instead of the Mach. Typically there are 

four stages to a Mach/CAS descent. These stages are: 

 

1. Change speed from the cruising Mach, M1, to the descent Mach, M2 .  

2. Descend at M2 . The aircraft descends atM2until reaching a predetermined CAS.  

3. Descend at constant CAS. The aircraft descends at its constant descent CAS until it reaches 

the metering fix crossing altitude, where it levels off. 

4. Decelerate to the metering fix crossing speed. Finally, the aircraft decelerates to 250 kt, the 

metering fix crossing speed of typically 250kt.  
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For this section’s comparison between Pseudocontrol and TGF-test, we start with an MD80 at 

30,000ft in cruise at M0.76. The aircraft initiates a Mach/CAS descent with the following 

speeds: (M0.76/320kt). The aircraft then levels out at 10,000 ft maintaining 320kts. Figure 12.4 

shows the maneuver. The match between the Mach and indicated airspeeds is good and the 

transition between Mach and indicated airspeed is smooth without any undesirable transients. 

Similarly, the level off at 10,000 ft is smooth without any overshoot. Most importantly, the 

altitude profiles for both simulations match very well.  
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Figure 12.4. Comparison of Pseudocontrol (black) and TGF-test (gray) performing a Mach/CAS descent from 

30,000 ft to 10,000ft using an MD80 at 130,000lb 

12.3 Speed Changes 

Speed changes, while they do not take much time in the course of a flight, do give a good 

indication of the model’s fidelity in terms of drag and thrust. Consider an acceleration. For the 

aircraft to have the proper acceleration, in a speed up maneuver, the excess thrust must be 

correct. This excess thrust is a function of the total available thrust and the total drag. If either is 

off, the acceleration will not be right. However, errors in either could cancel each other out. For 

instance, a high drag number could be canceled by a high thrust value. Decelerations, because 

they are performed at idle thrust, tend to remove the thrust from the system so the primary 

deceleration factor is the aircraft’s drag. If accelerations and decelerations are both studied, 
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generally conclusions about both the drag and thrust can be made. The deceleration gives insight 

into the fidelity of the drag  
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Figure 12.5.  A deceleration of an MD80 from 350kts to 250kts while at 10,000ft using Pseudocontrol (black) and 

TGF-test (gray) simulation tools  

 

model, and the acceleration gives insight into the thrust to drag ratio. Assuming drag information 

is known from the deceleration, thrust information can be derived from the acceleration.   

 

First, a deceleration is considered. An MD80 at 130,000lbs cruising at 10,000 ft is slowed down 

from 350kts to 250kts. Figure 12.5 shows the deceleration maneuver. The two simulations show 

good agreement during the slowdown with no undesirable transients in either simulation. 

Furthermore, altitude is held constant at 10,000ft. From this plot we can assume that the drag 

information in the MD80 model is accurate.  

 

Next, an acceleration is considered. The same MD80 is accelerated from a cruise condition of 

250kts and 10,000ft to 350kts while maintaining altitude. The maneuver is shown in Figure 12.6. 

The slope of the speed curves for both simulations match very well, suggesting that the thrust 

model for the aircraft is working well. The altitude is held reasonably well; however, the TGF-

test model does show a slight tendency to let the  
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Figure 12.6.  An MD80 accelerating from 250kts to 350kts while maintaining 10,000ft using Pseudocontrol 

(black) and TGF-test (gray) simulation tools  

 

altitude drift slightly. The altitude variance shown on the plot is on the order of 10ft, so it is not a 

major concern.  From the results in Figure 12.5 and Figure 12.6 we conclude that the thrust and 

drag models for this aircraft are good.  

 

Speed changes are also performed at higher speeds to test the compressibility drag model. First a 

deceleration is considered as shown in Figure 12.7. An MD80 at 30,000ft and Mach 0.8 is 

decelerated to Mach 0.6. There is a slight discrepancy here between the Mach numbers of the 

two models. The TGF-test simulation takes longer to enter the deceleration whereas the 

Pseudocontrol model enters the deceleration immediately. One reason for this gentle initiation of 

the maneuver is that the TGF-test simulation models engine spooling whereas the Pseudocontrol 

model does not. Once the deceleration is established, notice that the two Mach lines are nearly 

parallel. This suggests that the rate of acceleration is very close but the slow initiation time on 

the part of TGF-test offsets the maneuver. The result is that the maneuver takes 7-10 seconds 

longer with TGF-test than it does with Pseudocontrol. Since the rate of acceleration is nearly the 

same, we know that the drag models are very close. The difference in initiation is explained by 

the differences in the spooling lags of the engines and some differences in control system design. 
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If the longer deceleration is a problem, the effectiveness of the spooling lags could be decreased.  

Presently this is not a concern.    
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Figure 12.7.  An MD80 decelerating from Mach 0.8 to Mach 0.6 while maintaining 30,000ft using  Pseudocontrol 

(black) and TGF-test (gray) simulation tools 

 

The Mach acceleration is shown in Figure 12.8, where the MD80 accelerates from Mach 0.6 to 

0.8 while maintaining 25000 ft of altitude. Here we do not see the same spooling lags in the 

initiation of the maneuver. Since the spooling lags are the same for both increases and decreases 

in thrust level in the TGF-test model, there is no easy explanation for the discrepancy. At any 

rate, the two models are virtually identical in the Mach acceleration.  

 

12.4 Speed Changes during Climbs and Descents  

One of the more insidious problems encountered during the design of the longitudinal control 

system was the problem of  changing speeds during climbs and descents. Section 4.2 of the 

longitudinal control system discusses the problem in depth and explains how the ultimate 

solution to the problem was the ramping of inputs. Generally, the problem centered around the 

fact that large speed changes while climbing or descending was not anticipated, and the feedback 

control system was only set up to handle small changes. This meant that the control system had 
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rather high gains to keep the speed errors small.  When the high gains were applied to the large 

errors, the maneuvers became  
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Figure 12.8.  An MD80 accelerating from Mach 0.6 to Mach 0.8 while maintaining 25,000ft using  Pseudocontrol 

(black) and TGF-test (gray) simulation tools 

 

violent.  It was easy to see what was happening. During climb and descent, the control stick 

rather than the throttle is used to control speed. Therefore, when the feedback control system saw 

large errors from a user, the control stick was moved violently to correct the situation. This 

section uses TGF-test to demonstrate the speed changes during climbs to illustrate the stability of 

the maneuvers using the ramped inputs.   

 

Figure 12.9 illustrates an MD80 which is initially at 10,000ft and 250kts. A climb is initiated to 

30,0000ft. During the climb, the speed of the aircraft is first increased to 320kts and then reduced 

to 280kts. Finally the speed is increased to 300kts where it is held until the aircraft completes the 

climb. The point of the plot is that speed changes are made gracefully and do not cause any 

unusual patterns in the altitude profile other than the normal affects associated with the change of 

speed during a climb. Furthermore, attention to the lift coefficient curve shows that the control 

system is well behaved and is not commanding unreasonable control inputs. There also isn’t any 

chatter in the system. 
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Figure 12.9. An MD80 in a climb with various speed changes using the TGF-test simulation 

 

This is a direct result of the ramped inputs preventing large errors from occurring in Regions 3 

and 6.  

12.5 Automatic Route Capture 

The TGF-test algorithm uses several route capture algorithms to capture routes. The first of these 

is the automatic route capture algorithm which captures a route regardless of the aircraft’s 

location with respect to the route or its orientation. To verify this always works, many test cases 

were run. Generally, the key aspects which determine a good capture are whether or not the 

aircraft chooses a reasonable segment, and whether or not overshoot is excessive.  Some of the 

more difficult test cases are presented in this section.  

 

The first capture, shown in Figure 12.10, illustrates the case where the aircraft is very close to a 

segment along a route but headed in the wrong direction. When the route capture algorithm is 

initiated, the automatic route capture algorithm rightly chooses the segment which is closest to 

the aircraft. Then the algorithm calculates a dynamic fix for intercept along the route. However, 

because the aircraft is already so close to the segment, the aircraft penetrates the 1 turn radii 

boundary defining the route following algorithm  
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Figure 12.10.  Automatic route capture with the aircraft close to the route but headed in the wrong direction 

 

long before the aircraft is able to converge on a heading to the dynamic fix. Therefore, this 

particular scenario is a test of the route following algorithm more than it is a test of the automatic 

route capture algorithm.  It demonstrates that the route following algorithm can handle large 

discrepancies in aircraft heading relative to the bearing of the segment. The aircraft makes a right 

turn towards the segment and then slightly overshoots the segment. This overshoot is 

unavoidable because the aircraft is well within 2 turn radii of the segment before the maneuver is 

initiated. The performance shown in  Figure 12.10 is exactly what is desired. 

 

The next route capture maneuver, shown in Figure 12.11, demonstrates the case where the 

aircraft is at a considerable distance from the capture segment. This route capture demonstrates 

the use of the dynamic fix. As stated in Section 8.4.3.1, the dynamic fix is an imaginary fix 

which is created by the system at some location along a segment and is used as a point of 

reference for capture. When the automatic route capture algorithm was first conceived, it seemed 

as though the most obvious method of capturing the route was to fly some intercept heading to 

the route.  For instance, once the capture segment was determined, the aircraft could be given an 

intercept heading of 45 degrees and intercept the segment. However, this method seemed to have 

some inherent limitations. First, the aircraft would always intercept using 45  
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Figure 12.11.  Automatic route capture with an aircraft far from the capture segment 

 

degrees regardless of how far the aircraft was away from the segment. An aircraft far away from 

the capture segment might pass the segment before ever capturing it. Figure 12.11 illustrates an 

example of this type of capture situation.  

 

To avoid the problem of aircraft overshooting capture segments, a dynamic fix is placed on the 

segment to be captured, and the aircraft is commanded to fly toward the dynamic fix.  In this 

case the further aircraft naturally uses a larger intercept angle as seen in Figure 12.11. This 

system insures that the proper segment is captured and also provides some apparent variety in 

intercept angles so that all aircraft do not appear to behave the same. The capture algorithm does 

exactly what is expected. The automatic route capture guidance converges on a heading that 

leads directly to the dynamic fix, and then captures the route when the aircraft is within 1 turn 

radii of the segment. There is no overshoot because the aircraft is given enough space to 

maneuver in this example.  

 

The track in Figure 12.11 also demonstrates one other important performance trait of the 

algorithm. The algorithm switches segments and captures the next segment along the route 

without overshoot in spite of the acute angle which joins the segments. This example 

demonstrates the effectiveness of the segment transition algorithms at assuring  
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smooth segment transition regardless of segment geometry. The case shown in Figure 12.11 is a 

more difficult segment transition maneuver. 
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Figure 12.12.  Automatic route capture with the aircraft headed perpendicular to route 

 

Figure 12.12 is the least sensational of the capture examples in that it demonstrates a rather easy 

and likely scenario. The aircraft is relatively close to the capture segment and heading in the 

general direction of the segment. Therefore, the aircraft captures the segment with ease. This 

example does show how the dynamic fix does make the capture angles vary as a function of the 

distance that the aircraft is from the segment. Being relatively close in this example, the aircraft 

takes a smaller intercept angle which is apparent in the difference between the original heading 

and the intercept heading. Note that in this case, the original heading would have intercepted the 

segment as well.  When the aircraft is well within 1 turn radii, the aircraft turns to intercept the 

segment without any overshoot. This is exactly what is desired.  

 

The final automatic route capture example, shown in Figure 12.13, demonstrates the capture of a 

route from an ambiguous area relative to the route. As discussed in Section 8.4.1, there is a 

“dead” region where two segments meet as shown in Figure 12.13. If an aircraft is in this region,  

the normal segment determination algorithms will find that the aircraft is in front of the trailing 
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segment, behind the leading segment, and will not return a capture segment. In this case, another 

criteria is used which checks the aircraft’s  
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Figure 12.13. Automatic route capture with aircraft in an ambiguous region between segments 

 

distance from every segment’s trailing fix. It then chooses to capture the segment that is 

associated with the closest trailing fix. In Figure 12.13, the latter logic is used to determine the 

appropriate capture segment. Once the appropriate segment is determined, the aircraft is flown 

towards a dynamic fix and ultimately captures the segment with no overshoot.  

12.6 Vectored Route Capture 

The vectored route capture algorithm steers the aircraft along a user specified heading until the 

aircraft intercepts the route. Each time step, the algorithm determines which segment is best to 

capture and, each time step, the algorithm determines if it is time to merge onto the route.  It 

should be noted that the algorithm has no control over the initial heading. Therefore, if the user 

supplied heading steers the aircraft away from the route, the guidance law is not able to do 

anything about it although it will provide a warning if the aircraft is unlikely to intercept the 

route. It is important that this algorithm work properly because it is the most heavily used 

capture algorithm.  
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Figure 12.14.  Vectored route capture from an ambiguous position 

 

Because the vectored route capture algorithm does not choose the intercept heading, it must be 

prepared to work with all intercept headings, including those which may be poor  

choices. To test the vectored route capture algorithm several poor choices are provided. The first 

scenario, shown in Figure 12.14, demonstrates a vectored heading where the choice of capture 

segments is ambiguous. Because the algorithm can not control the heading of the aircraft, it is 

possible that the best capture segment could change depending on the aircraft’s flight path. In our 

scenario, the aircraft is initially pointed so that the flight path will intercept the front end of the 

trailing segment; however, the best segment for capture is actually the next segment along the 

route. The aircraft realizes this and turns onto that segment without overshoot when the segment 

proximity permits. 

 

Figure 12.14 also shows the aircraft transitioning to a new segment while on the route. This 

maneuver provides another example of the segment transition logic at work where the transition 

between segments occurs without any overshoot. This is good performance. Notice that the 

aircraft track is stopped just as the aircraft starts to make the turn onto the final segment at the 

route.  
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The final example of vectored route capture is shown in Figure 12.15. In this example, the 

aircraft is commanded to capture a route while being vectored on a heading which tends to be in 

the opposite direction of the route. This type of capture is particularly challenging because the 

aircraft must make such a large turn to capture the segment. As can be seen in Figure 12.15, the 

aircraft maintains the vectored heading until it is time 
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Figure 12.15. Vectored route capture when the vectored heading tends to be in the opposite direction of the route 

to merge onto the route. Once the appropriate distance is reached, the aircraft merges with the 

route with no overshoot.   

12.7 Initial Fix Route Capture 

One requirement for the simulation was that the aircraft had to be able to start flying along a 

route by passing through the initial fix. This type of route capture algorithm is actually the least 

complicated because there is no need to determine a capture segment and there is no need to 

determine when to initiate route following. The route following is initiated as soon as the aircraft 

passes through the initial fix. Several examples of this maneuver are shown. 

 

The first example, shown in Figure 12.16, illustrates the unlikely case where the aircraft is 

commanded to fly back to the beginning of the route from some location in front of the route. 

This maneuver turned out to be very handy for testing, but it is not likely to be used much in 

practice. It is interesting to see how this algorithm differs from the other capture algorithms. The 
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algorithm directs the aircraft to fly to the initial fix. However, unlike the automatic route capture 

algorithm, the initial fix capture flies the aircraft through the initial fix before capturing the route. 

This method guarantees overshoot when used in this  
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Figure 12.16. The initial fix capture algorithm being used to vector an aircraft back to the beginning of the route 

fashion. Naturally, this algorithm is really designed to assure that an aircraft behind a route 

captures the route by flying through the first fix. This case is illustrated in Figure 12.17. Notice 

that when the algorithm is used as it is intended, the overshoot is minimized. However, there will 

usually be some overshoot because the algorithm is constrained to fly through the initial fix.  

12.8 Segment Transition  

The segment transition algorithm controls when the aircraft initiates a turn from one segment to 

another. The algorithm must initiate a turn with enough space to smoothly make the transition. 

Because so many examples of segment transition are contained in the plots dealing with route 

capture, no additional plots are presented here. The reader should observe the transitions in 

Figure 12.10, Figure 12.11, Figure 12.14, and Figure 12.15. Figure 12.10 shows a typical 

segment transition where the difference in bearing angle between segments is small. The aircraft 

manages these without difficulty. The other examples all deal with transitions between segments 

with large bearing differences. These are more complex because the amount of space allotted for 

the transition is  
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Figure 12.17.  An aircraft capturing a route from behind using the initial fix capture algorithm 

 

more constrained. Excessive overshoot occurs if the transition logic isn’t designed to handle 

these cases. As can be seen from the plots, the current segment transition logic has no difficulty 

with these types of maneuvers.  

 

12.9 Flight Technical Error  

The flight technical error (FTE) is the inability or the inattention causing the pilot to steer the 

aircraft perfectly along the desired course. If the aircraft is steered by an autopilot, it is the error 

in steering the aircraft perfectly along the intended course. In terms of the previous navigation 

error sources, the FTE is considered to be the guidance and control error, where only the 

guidance error is included. The waypoint and navigation aid errors are not included. For the TGF 

simulation, there are two distinct flight technical errors modeled. The first flight technical error is 

the piloted flight technical error, the error associated with a human pilot following a route. The 

second error is the FMS error, the error associated with an FMS driven autopilot guiding the 

aircraft. Generally, the only difference between these errors is the magnitude of the standard 

deviation and the frequency of the mode. The statistics summary is reprinted in Table 12.1 
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Table 12.1 Error Statistics Summary 

Error Source Type Bias (1σσσσ) Beta 

FMS Enroute FTE 2
nd

 Order 

Gauss Markov 

0.13 nm 

5.2 kts 

0.7 

Piloted Enroute FTE 2
nd

 Order 

Gauss Markov 

0.7 nm 

42 kts 

0.5 

 

Generally, the only means of testing the final algorithms is to make sure that the lateral variation 

stays within the standard deviation requirements. This is difficult to do using graphical 

representation of trajectories, so generally tabulated data were used to verify the flight technical 

error. However, the trajectories provide a richer understanding of what the flight technical data 

does to the simulation. 

 

Four plots are presented in this section demonstrating the en route flight technical error 

developed for the simulation. These plots were all created using a closed route so that an aircraft 

would fly around the same route creating a Monte-Carlo simulation. The route was flown at 

different speeds using both piloted and FMS flight technical error. Figure 12.18 shows an aircraft 

flying at 250kts and 5000ft. This is a relatively slow configuration so the trajectories show a 

considerable amount of ‘wobbling’ back and forth along the route. This is because the frequency 

of the lateral flight technical error is not a function of the aircraft’s speed. Because the aircraft 

covers a greater distance per unit of time when moving faster, the flight technical error always 

appears to be more extreme in slower aircraft. This point is aptly demonstrated when Figure 

12.18 is compared to  

Figure 12.19 where a piloted aircraft is traveling at 300kts and 30,000ft. Even though the same 

flight technical error is in effect, the faster aircraft appears to have less ‘wobble’ in it trajectory, 

although the lateral offset of both plots is about the same.  

 

The final two plots show the same aircraft using FMS. Figure 12.20 shows the aircraft moving at 

250kts and 5000ft. Figure 12.9 shows the aircraft moving at 300kts and 30,000ft. Since the FMS 

has only about 20% of the lateral offset that the piloted flight technical error has, the aircraft 

trajectories are much tighter. This reduction in lateral offset over the piloted flight technical error 

is readily apparent; however, it is not impossible to get a sense for the ‘wobble’ of the aircraft 

along the route in either plot, with this scale of distance.  
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Figure 12.18.  Piloted flight technical error of an MD80 traveling at 250kts and 5000ft 

 

−122.6 −122.4 −122.2 −122 −121.8 −121.6 −121.4
36.4

36.6

36.8

37

37.2

37.4

37.6

longitude

la
ti
tu

d
e

 
Figure 12.19.  Piloted flight technical error of an MD80 traveling at 300kts and 30,000ft 
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Figure 12.20.  FMS flight technical error of an MD80 traveling at 250kts and 5000ft 
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Figure 12.21.  FMS flight technical error of an MD80 traveling at 300kts and 30,000ft 
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12.10 Navigation Errors 

The purpose of navigation error modeling is to model the variances which occur in aircraft flight 

paths as a result of imperfect information. The two navigation types generally used within the 

simulation at this point for en route types of operation are VOR/DME and GPS navigation. All 

of the navigation models perform similarly in that they create a perturbed estimate of the 

aircraft’s location for the guidance system to use as an input. Therefore, the navigation error 

models all return a latitude longitude pair which represents the aircraft’s position as determined 

by imperfect navigation.  

 

12.10.1 GPS Navigation Error 

The GPS navigation error is so small that it is generally undetectable, for the typical scales used. 

For the purposes of completeness, a plot of GPS error over a route is generated, but for en route 

purposes, GPS error is small enough to warrant ignoring it completely. Figure 12.22 shows an 

aircraft flying a route. Unfortunately, there is no way of seeing the aircraft track because it is so 

superbly hidden by the route line itself. Even exploded views of this plot fail to reveal any 

interesting variation between GPS and the route. 
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Figure 12.22.  An aircraft trajectory using GPS navigation 
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12.10.2 VOR/DME Error 

The navigation errors associated with VOR/DME error is much more interesting than those 

associated with GPS from a modeling point of view. Generally, VOR/DME navigation systems 

have biases in their angular measurements which tend to make lateral offset errors grow as a 

function of distance from the nav-aid. The errors also produce interesting quirks when VOR 

receivers are switched during navigation. For instance, an aircraft that is following one VOR for 

a portion of a segment may develop a lateral offset on one side of the segment and upon 

switching to the next VOR, immediately develop a lateral offset on the other side of the segment. 

 

The first scenario considered is shown in Figure 12.23 where an aircraft is tracking a segment 

which has a VOR/DME at each endpoint. The northerly most station has a slight easterly bias 

which tends to make the aircraft track to the east of center. The southerly VOR/DME tends to 

have a slight westerly bias which makes the aircraft track to the west of center.  
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Figure 12.23.  An aircraft flying a segment using VOR/DME navigation where both endpoints are VOR/DME 

stations 

 

The aircraft is heading southwest along the segment, and it first captures the route shortly after 

passing the northerly VOR/DME. The aircraft then tracks the course using a signal from the 

northerly VOR/DME. As the aircraft progresses along the route, the aircraft drifts to the east 

slightly. When the aircraft passes the midpoint of the segment, the aircraft switches nav-aids and 
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uses the southerly VOR/DME instead. Upon tuning in this nav-aid, the aircraft crosses over the 

route and tracks on the other side because of the  

 

 

slight westerly bias associated with the southern VOR/DME station. As the aircraft approaches 

the station, the error becomes smaller as would be expected.  

 

The second scenario, shown in Figure 12.24, illustrates an aircraft following a route which has a 

VOR/DME station at each of its endpoints. However, there are two intersections in between the 

VOR/DME stations making three distinct segments. Because of this arrangement, the center 

segment does not have a VOR/DME station associated with it. In this situation, the algorithm 

must choose between the southerly VOR/DME and the northerly VOR/DME to determine which 

is most appropriate to use for navigation. From visual inspection, the human pilot would 

automatically choose the northerly most VOR/DME because the center segment is nearly 

perfectly aligned with a radial from that station. Using the southerly VOR/DME would require 

some sort of area navigation technique.  
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Figure 12.24. An aircraft flying a route comprised of 2 VOR/DME stations with 2 intersections between the 

VOR/DME stations 
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The aircraft is initially headed northeast on the first segment using the southerly VOR/DME for 

navigation. Because this is the only VOR/DME associated with the first segment, the aircraft 

does not switch nav-aids. However, when the aircraft switches to the middle segment, it must 

make a decision about which VOR/DME station to use.  As discussed in the last paragraph, the 

northerly VOR/DME is the best one to use and in fact, we see that the northerly VOR/DME is 

the one chosen by the algorithm for navigation. We know this by observing the bias that the 

aircraft takes after switching between the first segment and the middle segment. The aircraft has 

an easterly bias which is associated with the northerly VOR/DME. This bias is continually 

decreased as the aircraft flies further towards the VOR/DME and crosses onto the final segment. 

Eventually, when the aircraft crosses the northern VOR/DME, the bias is reduced to zero.  

 

There is one other characteristic to note regarding the crossing of segment 1 onto segment 2. 

Notice that the aircraft is using DME to determine the end of the route rather than the 

intersection of VOR/DME radials. If the intersection of VOR/DME radials was used to 

determine the fix location, the aircraft would have estimated the fix location to be northeast of 

the actual fix location. Rather, the aircraft estimates the end of the route with near perfection in 

spite of the VOR radial biases. This is a trait of an aircraft equipped with DME as opposed to one 

which only has VOR navigation. This segment transition phenomena is one of the distinguishing 

characteristics of VOR/DME navigation as opposed to VOR/VOR navigation which is not 

currently modeled in the system.  

12.11 Terminal Flight Phases 

The terminal flight phases for the aircraft consist of take off and landing.  These maneuvers are 

different than any which have been considered so far because they require that the aircraft fly 

slowly and interact with the ground.  

12.11.1 Take-Off 

During take-off, the aircraft initially accelerates down the runway with the landing gear initially 

supporting all of the aircraft weight. This phase of take-off is referred to as the ground roll.  The 

lift coefficient is held at zero. Since we assume coordinated flight, we do not concern ourselves 

with keeping the aircraft on the centerline. When the aircraft reaches rotation speed, the lift 

coefficient of the aircraft is increased until the aircraft leaves the ground and starts climbing.  

The landing gear is retracted as soon as the aircraft has climbed several hundred feet. Once the 

landing gear is retracted, the maximum available throttle is reduced to 90% of maximum 

possible throttle. Next, the aircraft accelerates to a new speed of 210 kt. While speeding up, the 

flaps are retracted as the proper speeds are obtained. Retraction of the flaps is the last commands 

issued by the navigator for take-off.  

 

Figure 12.25 illustrates the take-off of an MD80 aircraft weighing 130,000lbs. The aircraft 

initiates the takeoff ground roll at 20 seconds into the strip chart recording. Roughly 40 seconds 

later, the aircraft has achieved sufficient speed for rotation. Looking at the lift coefficient plot, 
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we see the initial lift coefficient spike which is the control system executing the rotation. As the 

aircraft starts to lift off the ground we see the speed initially stabilize right around the rotation 

speed. Then, the aircraft starts to accelerate at a slower rate towards 210kts. Upon reaching 

210kts, the aircraft holds a constant speed and  
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Figure 12.25.  An MD80 at 130,000lbs taking off  with a rotation speed of 150KIAS 

 

continues to climb. Notice that the rate of climb increases when the aircraft stabilizes at 210kts.    

 

One of the important features of this take-off example to notice is the simultaneous acceleration 

and climb between 60sec and 120sec. From Figure 12.1, we know that on takeoff the aircraft 

climbs and accelerates simultaneously. To cause this, special ramping of the speed input is 

performed as discussed in Section 12.4.3.  

12.11.2 Landing  

The final approach and landing is quite possibly the most difficult of all maneuvers to simulate. 

The aircraft must automatically follow an approach to an airport, maintaining the appropriate 

altitudes all along the path, and then capture the ILS localizer and glide slope for the final 

vertical descent. Finally, the aircraft must touchdown. All through the maneuver, the control 

logic must monitor and command the proper aircraft speed and make sure that the appropriate 
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flap settings are deployed. Furthermore, the entire final approach is flown on the back side of the 

thrust curve, the most difficult flight regime for the control logic.     

 

The terminal flight phases are also the most difficult to verify. Pseudocontrol does not land 

aircraft so there is no acceptable baseline for insuring that the longitudinal dynamics are proper. 

Therefore, verification of the longitudinal performance on landing and take-off consisted of 

making sure that the aircraft performance conformed to the performance data which were used to 

create the algorithms. Such data are contained in Figures 12.1 and 12.2.  

 

First, the longitudinal dynamics is considered. Figure 12.26 shows an MD80 on final approach 

and landing to an airport. By the time Figure 12.26 starts recording the approach, the aircraft has 

already slowed to 170kts and has captured the localizer. At roughly 55 seconds, the aircraft 

captures the glide slope. The aircraft simultaneously slows down to its final approach speed of 

130kts. At roughly 180 seconds, the aircraft touches down and the brakes are applied. The speed 

reduces quickly and the aircraft is brought to a standstill by 210 seconds. 
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Figure 12.26.  Longitudinal view of an MD80 on final approach and landing 
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Figure 12.27 illustrates the top view of the same MD80 from Figure 12.26. The aircraft has 

already captured the localizer when the track starts. The aircraft is heading southeast along the 

ILS. The first circle along the route is an initial approach fix located 20 miles from the airport 

threshold, which is marked by an ‘X.’ The second circle, which is 5 miles from the threshold, is 

the final approach fix for the ILS.  For this example, both the flight technical error and the ILS 

beam bending model are in effect. However, as can be seen from the track in Figure 12.27, little 

variation is seen. This is expected considering the small standard deviations which are measured 

from actual data. The aircraft touches down near the threshold and stops moving about 3000 ft 

later.   
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Figure 12.27.  A top view of an MD80 on final approach to landing 

12.12 Conclusions  

The testing that was done to verify and validate the TGF simulation gives us a high degree of 

confidence that the models contained herein have sufficient fidelity for use as a target generating 

tool.  

 

Generally, there were two means of verifying and validating the system. For the longitudinal 

dynamics, a quantitative measuring tool was needed to insure that the aircraft performance was 
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realistic. The tool used was Pseudocontrol, the aircraft dynamics kernel of PAS. PAS, the NASA 

tool for trajectory generation, has been accepted as an acceptable baseline for aircraft 

performance. For the guidance operations, such as route capture and route following, visually 

inspecting the maneuvers is sufficient to insure proper operation. Repeated testing of algorithms 

was done to insure that the route capture and route following algorithms would capture the route 

from all different initial conditions. Examples of the most difficult initial conditions have been 

discussed in this section.   

 

Flight technical error and navigation error was validated by making sure that the modeled 

variances conformed to the real flight data statistics which were used to construct the models.  

 

Terminal flight phases were the most difficult to verify because of the lack of information 

available for actual aircraft descents and landings. Information from flight handbooks and 

performance manuals was used to verify as best possible the aircraft performance on landing.  
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Appendix	A	-	Analysis	of	the	Transfer	Functions	of	the	

Longitudinal	Dynamics	

 

In the original version of this document (in section 3.3), an analysis was conducted on the 

transfer function between a lift coefficient input and an altitude rate output for a single-

input, single-output (SISO) system. This was intended to provide insight to the 

controllability of altitude rate using lift coefficient. There was concern about the right-

half-plane zeros in the transfer function when the aircraft is flying on the back-side of the 

thrust curve. The analysis concluded that a control reversal occurred in this regime 

making it impossible to maintain stable flight when using lift coefficient to control 

altitude rate. 

 

The analysis failed to consider that in steady, level flight on the back-side of the thrust 

curve, the system is not SISO; thrust is used to control speed while lift coefficient is used 

to control altitude rate. And in level acceleration where the system is SISO, the linearized 

system of equations (3.27) and (3.28) does not apply. The reader is reminded that the 

system is linearized about a steady, level reference condition in which thrust equals drag. 

In level acceleration, the throttle is advanced to full and is greater than drag and energy is 

being added to the system. A similar argument can be made for level deceleration. 

 

To get an indication of the response of the altitude rate to lift coefficient input in steady, 

level flight, we can modify the LTD system of equations to absorb the thrust control and 

then analyze the system as a SISO, LTD system. The purpose of this appendix is to blend 

the optimized thrust control gains of Chapter 4 into the LTD system and then analyze the 

CL
P

h
u

∆ �  transfer function. The analysis shows that, in this dual input, dual output system, 

thrust is adjusted to counteract the adverse effect of the changing lift coefficient on the 

speed so that the commanded altitude rate can be captured. Equations (4.26) are restated 

here. 
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The control law is reduced from equation (4.14). 

 

 

14

22

14

22

0

0

0

0

CL

T

CL

T

P p

P p

i i

ii

u k

u k M

u k h

ku

   
   

∆    
= = −     ∆    
   

  

u
�

 

 

In order to incorporate the thrust control into the LTD system, the thrust and lift 

coefficient controls must first be separated. We also re-introduce the vectors as explicit 

functions of time. 
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Then, assuming KT is known. 
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We arrive at the transfer function by converting to the laplace domain and solving the 

matrix algebra. 
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We first solve for the closed-loop A matrix. 
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Then, 
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Computation of the inverse of this matrix is not trivial. We arrived at the solution using 

the algebraic matrix inversion functions of MATLAB
®
. 
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Because of the form of the C-matrix, which pre-multiplies the ( ){ }
1

s
−

I - A - BK C
T

 

matrix in the equation (A.1), the 
CL

p

h
u

∆ �  transfer function is concerned only with second 

row of the ( ){ }
1

s
−

I - A - BK C
T

 matrix. (Note:  transposed notation is used to conserve 

page space.) 
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Post-multiplying the B-matrix, we get, 
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and pre-multiplying the C-matrix, we get, 
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The 
CL

p

h
u

∆ �  transfer function is element (2,1) of the ( ){ }
1

s
−

C I - A - BK C B
T

 matrix. 
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We verify that by setting 
21 21

0
p i

k k= =  and substituting in the matrix partial derivatives, 

we get equation (3.67). 
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But of course, we are concerned with analyzing the transfer function with the optimized 

thrust gains left in. For a B763 at stall speed and 30,000 ft. equation (A.2) becomes, 
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which has complex conjugate zeros at z1,2 = -0.19 ± 0.152. In other words, thrust control 

of speed moves the 
CL

p

h
u

∆ �  transfer function zeros into the left-half plane, thereby 

eradicating the non-minimum phase system. The integral control transfer function, 

CL
i

h
u

∆ � , is the same as equation (A.2) except with an added integral pole at s = 0. The 

root loci of proportional and integral 
L

h
C

∆ �  transfer functions with thrust control of 

speed are shown in Figure A.1. The figure shows that lift coefficient control of altitude 

rate is well-behaved as long as speed is controlled by thrust simultaneously. We do, 

however, have to be mindful of low damping in this area, as indicated by the locus 

moving up the imaginary axis of the integral control root locus plot. 

 

 

Figure A.1: The root loci of proportional and integral lift coefficient control of altitude rate considering 

the thrust control of speed 
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Appendix	B	-	2nd	Order	Gauss-Markov	model	for	GPS	Clock	

Error	due	to	Selective	Availability	

 

When GPS position and velocity error was first modeled, the dominant error was the GPS 

satellite clock error. Figure B.1 illustrates the basic satellite geometry.  

 

GPS satellite clock error is an intentional degradation of the GPS signal called Selective 

Availability (SA). It was implemented in 1990 to deny full position and velocity accuracy 

to “unauthorized users” after initial testing of the GPS system revealed accuracies much 

better than anticipated.  

 

In May of 2000, the United States stopped degrading GPS performance with SA. 

 

The analysis supporting the modeling of GPS satellite SA illuminates the implementation 

of the 2
nd

 Order Gauss-Markov utility routines used to model other navigation errors, 

such as Flight Technical Error.  

 

Since the exact model for GPS satellite SA clock error is classified, a number of authors 

have approximated it using a second order Gauss Markov model in the pseudorange 

domain (Parkinson & Spilker, 1996). These models can be used to determine the GPS 

receiver position and velocity errors as follows. Starting with the SA clock error model 

for each visible satellite, the SA clock pseudorange and range rate errors can be obtained. 

These errors can then be translated into a local coordinate frame, such as a local east-

north-up (ENU) frame using the methodology described earlier. 

 

An equivalent local coordinate system SA position and velocity error model can be 

formulated, to avoid the need to model the GPS satellite orbits which are required to 

determine the line-of-sight direction cosines. It also avoids the need for a Least Squares 

filter. 
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Figure B.1 GPS Receiver Measurement Geometry 

 

The approach that is used is to start with a second-order Gauss Markov SA pseudorange 

model. Then, by adjusting the parameters of this model to match observed local 

coordinate SA position error statistics, it is possible to obtain a simplified SA position 

and velocity error model. 

 

In general, when the uncorrelated SA pseudorange and range rate errors are translated 

into SA position and velocity errors, the resulting position and velocity errors are 

correlated. The fundamental simplifying assumption that will be used is to assume that 

these correlations are negligible. If the GPS satellites were located directly overhead and 

exactly on the horizon at the four cardinal directions, the correlations would indeed be 

zero. 
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Table B.1. Observed Local Coordinate Position Root-Mean-Square (rms) Errors 

 

Coordinate 

 

Position Error 

Measured Average Daily 

Variations over 30 Days 

East 32 m 15% 

North 31 m 14% 

Horizontal 41.5* m & 37.5** m 10% 

Vertical 67 m 10% 

 

* Based on observed horizontal position errors 

**  Based on observed steady state horizontal position time difference 

errors 

 

The available field data, obtained from Timoteo (1992) consists of the position error 

statistics of Table B.1. In addition to the day-to-day variability, there is also a latitude 

dependence for the vertical error, particularly for latitudes greater than 60 degrees.  

 

In addition, field data was abstracted from Timoteo (1992) to describe the horizontal 

temporal decorrelation. 

 

A general second-order Gauss Markov model is described by the second-order 

differential equation (Gelb, 1974): 
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Expressed as a state-space equation, (B.1) becomes 
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where,   = error and error derivative (v = x)

               = damping factor

                frequency

               = Gaussian white noise

               = scale factor
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equations (B.1) or (12.14) constitutes the simplified SA position and velocity error 

model. There is one set of these equations for each east, north, and vertical component. 
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Discretizing the Continuous 2nd Order Gauss Markov Process 

To implement a 2
nd

 order Gauss Markov process in code, it must be discretized. The 

corresponding closed-form 2
nd

 order difference equation is shown in equation (B.3)   

(Parkinson & Spilker, 1996): 
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The discrete input matrix has three terms and the state transition matrix has four terms 

within them that need to be calculated as shown in equations (B.4)and (B.5). 
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To calculate the state transition matrix variables, it is necessary to calculate some 

preliminary terms. These terms are defined in equations (B.6) and (B.7). 
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The state transition matrix terms are then defined in equations (12.3) through (12.4). 
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To calculate the discrete input matrix, an additional term is needed which is shown in 

equation (B.12). 

 

 c2 =
F
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β
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      (B.12) 

 

The terms for the discrete input matrix are shown in equations (B.13) through (B.15)  

 

γ 11 11 12

2

22= −Q Q Q/      (B.13) 

 

γ 12 = Q Q12 22/      (B.14) 

 

γ 22 = Q22       (B.15) 

 

where the terms Q11 , Q12 , and Q22 , are terms of the white noise error covariance matrix 

and are defined in equations (B.16) through (B.18). 

 

 ( ) ( ) ( )[ ]  2sin2cos11
4

1011

22

2

1

0

3

0

2

11
0














+−








−= −

∆tω/ωωβ∆tωβe
ω

ω

βω

c
Q

∆tβω
(B.16) 

( )[ ][ ]∆tωe
ω

c
QQ

∆tβω

1

2

2

1

2

2112 2cos1
4

0 −== −
     (B.17) 

( ) ( ) ( )[ ]  2sin2cos11
4

1011

22

2

1

0

0

2

22
0














−−








−= −

∆tω/ωωβ∆tωβe
ω

ω

βω

c
Q

∆tβω
 (B.18) 

 

The state variables of the process, x  and v , are initialized using equations (B.19) and 

(B.20)  where the terms w1  and w2  are unit variance discrete Gaussian white noise. 

(Gaussian random numbers).  

 

x wp= σ 1       (B.19) 

 

v wv= σ 2       (B.20) 
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Calibration of Parameters 

The next step is to select the three unknown parameters, σp, σv, andβ, to match the 

observed data statistics. The results are summarized in Table B.2. A one-hour sample 

history for all three local position and velocity SA error components is illustrated in 

Figure B.2 and Figure B.3. 

 

Table B.2  Simplified vs. Observed SA Position and Velocity Model Parameters 

 

Parameter Symbol Observed Predicted 

North Position Sigma σpN 31 m 31 m 

East Position Sigma σpE 32 m 32 m 

Vertical Position Sigma σpV 67 m 67 m 

North Velocity Sigma σvN  0.38 m/s 

East Velocity Sigma σvE  0.39 m/s 

Vertical Velocity Sigma σvV  0.82 m/s 

Damping Factor β  0.55 

Natural Frequency ω0  0.0122 

 ω1  0.0102 

 c
2
  0.0021 

Horizontal Position Sigma σpH 41.5* m & 

37.5** m 

 

37.3 m 

Horizontal Position Correlation ρNE -0.13* & 

-0.29** 

 

-0.3 

  

 *  Based on observed horizontal position errors 

 **  Based on observed steady state horizontal position time difference errors   

  in Figure B.2.  
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Figure B.2.  Monte Carlo Simulated SA Position Errors 
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Figure B.3. Monte Carlo Simulated SA Velocity Errors  
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Glossary 

Azimuth An angle measured relative to the ground-based coordinate 

system (i.e., true north). 

Bearing The azimuth direction of the position vector from one point to 

another (e.g., from an aircraft to a fix). 

Drag The component of aerodynamic force acting parallel to the 

aircraft's longitudinal axis and in a direction opposite the 

thrust. It is defined positive in the direction of the negative x-

axis of the body axis system. 

Dutch Roll Mode A coupled roll and yaw motion that is often insufficiently 

damped. 

Empty Weight The weight of a fully operational aircraft without fuel or 

payload. 

Flight Path Angle The angle that the true airspeed vector makes with a horizontal 

plane. 

Fuel Weight The fuel capacity of the aircraft. 

Geocentric Latitude The angle between a line from center of the earth to the given 

point and the equatorial plane. 

Geodetic Latitude The angle between a line perpendicular to the surface of the 

ellipsoidal earth at the given point and the equatorial plane. 

Ground Track Heading The angle that the aircraft's ground speed vector makes with 

the ground-based coordinate system (i.e., true-north). This is 

the azimuth of the aircraft’s velocity vector. The difference 

between ground track heading and true heading is due to the 

wind. 

Ground Track Speed The speed of the aircraft over ground. In other words, it is the 

magnitude of the aircraft’s true airspeed projected to a 

horizontal plane. 

Heading The azimuth of the aircraft's nose (i.e., longitudinal axis). 

Indicated Airspeed This is the speed shown by an aircraft's airspeed indicator, as 

calculated from the measured local dynamic pressure. Its 

difference from true airspeed increases with altitude. (Also 

known as Calibrated Airspeed.)   

Lift The component of aerodynamic force acting normal to the 

plane formed by the true airspeed vector and the aircraft's 

lateral axis. 

Mach Number The ratio of the true airspeed to the local speed of sound. 

Magnetic [Azimuth] An azimuth angle (e.g., heading, bearing) measured relative to 

magnetic north. 
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Payload Weight The payload capacity of the aircraft. 

Phugoid Mode An oscillatory mode of aircraft dynamics in which kinetic and 

potential energy are exchanged. The angle of attack is mainly 

unchanged. 

Pitch Angle The angle that the aircraft's longitudinal axis makes with the 

ground.  (Also known as Elevation Angle)  

Rhumb Line A straight line on a Mercator projection of the earth. It is 

convenient in navigation because it yields the constant bearing 

to be followed for navigating between the two end points of the 

rhumb line. 

Roll Angle The angle that the aircraft's lateral axis makes with the ground.  

(Also known as Bank Angle) 

Short Period Mode An oscillatory motion in the axis of rotation of pitch. The angle 

of attack is constantly changing. This mode is typically much 

faster than the phugoid. 

Thrust The thrust force created by the aircraft's engines. Acts along 

the aircraft's longitudinal axis and is defined positive in the 

direction of the x-axis of the body axis system. 

True [Azimuth] An azimuth angle (e.g., heading, bearing) measured relative to 

true north. 

True Airspeed The actual speed of the aircraft relative to the surrounding air 

mass. 
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Acronyms 

ADM aircraft dynamics model 

AGL above ground level 

AMT aircraft modeling tool 

ATC air traffic control 

ATM air traffic management 

BADA Base of Aircraft Data 

CAS calibrated airspeed 

DIS Distributed Interactive Simulation (DIS provides a military 

standard earth coordinate system.) 

DME Distance Measure Equipment 

DOF degree of freedom 

ECEF earth-centered, earth-fixed 

FAA Federal Aviation Administration 

FTE flight technical error 

GPS Global Positioning System 

IAS indicated airspeed 

LTD linear, time-dependent 

NAS National Airspace System 

NED the North-East-Down coordinate system 

RNAV Radio Navigation 

SISO single input, single output 

TGF Target Generation Facility 

VOR VHF Omnidirectional Range navigation system 
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